• ISSN 1674-8301
  • CN 32-1810/R
Volume 35 Issue 2
Mar.  2021
Turn off MathJax
Article Contents
Channabasavaiah B. Gurumurthy, Thomas L. Saunders, Masato Ohtsuka. Designing and generating a mouse model: frequently asked questions[J]. The Journal of Biomedical Research, 2021, 35(2): 76-90. doi: 10.7555/JBR.35.20200197
Citation: Channabasavaiah B. Gurumurthy, Thomas L. Saunders, Masato Ohtsuka. Designing and generating a mouse model: frequently asked questions[J]. The Journal of Biomedical Research, 2021, 35(2): 76-90. doi: 10.7555/JBR.35.20200197

Designing and generating a mouse model: frequently asked questions

doi: 10.7555/JBR.35.20200197
More Information
  • Corresponding author: Channabasavaiah B. Gurumurthy, Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68106-5915, USA. Tel: +1-402-559-8187, E-mail: cgurumurthy@unmc.edu; Thomas L. Saunders, Department of Internal Medicine, Division of Genetic Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA. Tel: +1-734-647-2910, E-mail: tsaunder@umich.edu; Masato Ohtsuka, Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan. Tel: +81-463-93-1121, E-mail: masato@is.icc.u-tokai.ac.jp
  • Received: 2020-11-28
  • Revised: 2021-02-26
  • Accepted: 2021-03-10
  • Published: 2021-03-26
  • Issue Date: 2021-03-28
  • Genetically engineered mouse (GEM) models are commonly used in biomedical research. Generating GEMs involve complex set of experimental procedures requiring sophisticated equipment and highly skilled technical staff. Because of these reasons, most research institutes set up centralized core facilities where custom GEMs are created for research groups. Researchers, on the other hand, when they begin thinking about generating GEMs for their research, several questions arise in their minds. For example, what type of model(s) would be best useful for my research, how do I design them, what are the latest technologies and tools available for developing my model(s), and finally how to breed GEMs in my research. As there are several considerations and options in mouse designs, and as it is an expensive and time-consuming endeavor, careful planning upfront can ensure the highest chance of success. In this article, we provide brief answers to several frequently asked questions that arise when researchers begin thinking about generating mouse model(s) for their work.

     

  • loading
  • [1]
    Palmiter RD, Brinster RL. Transgenic mice[J]. Cell, 1985, 41(2): 343–345. doi: 10.1016/s0092-8674(85)80004-0
    [2]
    Saunders TL. The history of transgenesis[M]//Larson MA. Transgenic Mouse: Transgenic Mouse. New York: Humana, 2020: 1–26, doi: 10.1007/978-1-4939-9837-1_1.
    [3]
    Brinster RL, Braun RE, Lo D, et al. Targeted correction of a major histocompatibility class II E alpha gene by DNA microinjected into mouse eggs[J]. Proc Natl Acad Sci U S A, 1989, 86(18): 7087–7091. doi: 10.1073/pnas.86.18.7087
    [4]
    Cain-Hom C, Splinter E, van Min M, et al. Efficient mapping of transgene integration sites and local structural changes in Cre transgenic mice using targeted locus amplification[J]. Nucleic Acids Res, 2017, 45(8): e62. doi: 10.1093/nar/gkw1329
    [5]
    Chiang C, Jacobsen JC, Ernst C, et al. Complex reorganization and predominant non-homologous repair following chromosomal breakage in karyotypically balanced germline rearrangements and transgenic integration[J]. Nat Genet, 2012, 44(4): 390–397. doi: 10.1038/ng.2202
    [6]
    Dubose AJ, Lichtenstein ST, Narisu N, et al. Use of microarray hybrid capture and next-generation sequencing to identify the anatomy of a transgene[J]. Nucleic Acids Res, 2013, 41(6): e70. doi: 10.1093/nar/gks1463
    [7]
    Goodwin LO, Splinter E, Davis TL, et al. Large-scale discovery of mouse transgenic integration sites reveals frequent structural variation and insertional mutagenesis[J]. Genome Res, 2019, 29(3): 494–505. doi: 10.1101/gr.233866.117
    [8]
    Meisler MH. Insertional mutation of 'classical' and novel genes in transgenic mice[J]. Trends Genet, 1992, 8(10): 341–344. doi: 10.1016/0168-9525(92)90278-C
    [9]
    Clark AJ, Bissinger P, Bullock DW, et al. Chromosomal position effects and the modulation of transgene expression[J]. Reprod Fertil Dev, 1994, 6(5): 589–598. doi: 10.1071/RD9940589
    [10]
    Gödecke N, Zha LS, Spencer S, et al. Controlled re-activation of epigenetically silenced Tet promoter-driven transgene expression by targeted demethylation[J]. Nucleic Acids Res, 2017, 45(16): e147. doi: 10.1093/nar/gkx601
    [11]
    Lin TP. Microinjection of mouse eggs[J]. Science, 1966, 151(3708): 333–337. doi: 10.1126/science.151.3708.333
    [12]
    Wilson IB, Bolton E, Cuttler RH. Preimplantation differentiation in the mouse egg as revealed by microinjection of vital markers[J]. J Embryol Exp Morphol, 1972, 27(2): 467–469. https://dev.biologists.org/content/27/2/467.long
    [13]
    Gordon JW, Scangos GA, Plotkin DJ, et al. Genetic transformation of mouse embryos by microinjection of purified DNA[J]. Proc Natl Acad Sci U S A, 1980, 77(12): 7380–7384. doi: 10.1073/pnas.77.12.7380
    [14]
    Ohtsuka M, Ogiwara S, Miura H, et al. Pronuclear injection-based mouse targeted transgenesis for reproducible and highly efficient transgene expression[J]. Nucleic Acids Res, 2010, 38(22): e198. doi: 10.1093/nar/gkq860
    [15]
    Ohtsuka M, Miura H, Mochida K, et al. One-step generation of multiple transgenic mouse lines using an improved Pronuclear Injection-based Targeted Transgenesis (i-PITT)[J]. BMC Genomics, 2015, 16(1): 274. doi: 10.1186/s12864-015-1432-5
    [16]
    Tasic B, Hippenmeyer S, Wang C, et al. Site-specific integrase-mediated transgenesis in mice via pronuclear injection[J]. Proc Natl Acad Sci U S A, 2011, 108(19): 7902–7907. doi: 10.1073/pnas.1019507108
    [17]
    Capecchi MR. Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century[J]. Nat Rev Genet, 2005, 6(6): 507–512. doi: 10.1038/nrg1619
    [18]
    Sauer B, Henderson N. Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1[J]. Proc Natl Acad Sci U S A, 1988, 85(14): 5166–5170. doi: 10.1073/pnas.85.14.5166
    [19]
    Skarnes WC, Rosen B, West AP, et al. A conditional knockout resource for the genome-wide study of mouse gene function[J]. Nature, 2011, 474(7351): 337–342. doi: 10.1038/nature10163
    [20]
    White JK, Gerdin AK, Karp NA, et al. Genome-wide generation and systematic phenotyping of knockout mice reveals new roles for many genes[J]. Cell, 2013, 154(2): 452–464. doi: 10.1016/j.cell.2013.06.022
    [21]
    Meier ID, Bernreuther C, Tilling T, et al. Short DNA sequences inserted for gene targeting can accidentally interfere with off-target gene expression[J]. FASEB J, 2010, 24(6): 1714–1724. doi: 10.1096/fj.09-140749
    [22]
    Bult CJ, Blake JA, Smith CL, et al. Mouse Genome Database (MGD) 2019[J]. Nucleic Acids Res, 2019, 47(D1): D801–D806. doi: 10.1093/nar/gky1056
    [23]
    Gurumurthy CB, Joshi PS, Kurz SG, et al. Validation of simple sequence length polymorphism regions of commonly used mouse strains for marker assisted speed congenics screening[J]. Int J Genomics, 2015, 2015: 735845. doi: 10.1155/2015/735845
    [24]
    Song AJ, Palmiter RD. Detecting and avoiding problems when using the Cre–lox system[J]. Trends Genet, 2018, 34(5): 333–340. doi: 10.1016/j.tig.2017.12.008
    [25]
    Madisen L, Zwingman TA, Sunkin SM, et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain[J]. Nat Neurosci, 2010, 13(1): 133–140. doi: 10.1038/nn.2467
    [26]
    Fernández-Chacón M, Casquero-García V, Luo W, et al. iSuRe-Cre is a genetic tool to reliably induce and report Cre-dependent genetic modifications[J]. Nat Commun, 2019, 10(1): 2262. doi: 10.1038/s41467-019-10239-4
    [27]
    Soriano P. Generalized lacZ expression with the ROSA26 Cre reporter strain[J]. Nat Genet, 1999, 21(1): 70–71. doi: 10.1038/5007
    [28]
    Niwa H, Yamamura K, Miyazaki J. Efficient selection for high-expression transfectants with a novel eukaryotic vector[J]. Gene, 1991, 108(2): 193–199. doi: 10.1016/0378-1119(91)90434-d
    [29]
    Sakai N. Principles for the use of in vivo transgene techniques: overview and an introductory practical guide for the selection of tetracycline-controlled transgenic mice[M]//Shiozawa S. Arthritis Research: Methods and Protocols. New York: Humana Press, 2014: 33–40, doi: 10.1007/978-1-4939-0404-4_4.
    [30]
    Chen XY, Zaro JL, Shen WC. Fusion protein linkers: property, design and functionality[J]. Adv Drug Deliv Rev, 2013, 65(10): 1357–1369. doi: 10.1016/j.addr.2012.09.039
    [31]
    Ryan MD, King AMQ, Thomas GP. Cleavage of foot-and-mouth disease virus polyprotein is mediated by residues located within a 19 amino acid sequence[J]. J Gen Virol, 1991, 72(11): 2727–2732. doi: 10.1099/0022-1317-72-11-2727
    [32]
    Kim JH, Lee SR, Li LH, et al. High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice[J]. PLoS One, 2011, 6(4): e18556. doi: 10.1371/journal.pone.0018556
    [33]
    Hosur V, Low BE, Li D, et al. Genes adapt to outsmart gene-targeting strategies in mutant mouse strains by skipping exons to reinitiate transcription and translation[J]. Genome Biol, 2020, 21(1): 168. doi: 10.1186/s13059-020-02086-0
    [34]
    El-Brolosy MA, Kontarakis Z, Rossi A, et al. Genetic compensation triggered by mutant mRNA degradation[J]. Nature, 2019, 568(7751): 193–197. doi: 10.1038/s41586-019-1064-z
    [35]
    Bendriem RM, Singh S, Aleem AA, et al. Tight junction protein occludin regulates progenitor Self-Renewal and survival in developing cortex[J]. eLife, 2019, 8: e49376. doi: 10.7554/eLife.49376
    [36]
    Popp MW, Maquat LE. Leveraging rules of nonsense-mediated Mrna decay for genome engineering and personalized medicine[J]. Cell, 2016, 165(6): 1319–1322. doi: 10.1016/j.cell.2016.05.053
    [37]
    Lyu Q, Dhagia V, Han Y, et al. CRISPR-Cas9-mediated epitope tagging provides accurate and versatile assessment of myocardin-brief report[J]. Arterioscler Thromb Vasc Biol, 2018, 38(9): 2184–2190. doi: 10.1161/ATVBAHA.118.311171
    [38]
    Choi M, Lu YW, Zhao JJ, et al. Transcriptional control of a novel long noncoding RNA Mymsl in smooth muscle cells by a single Cis-element and its initial functional characterization in vessels[J]. J Mol Cell Cardiol, 2020, 138: 147–157. doi: 10.1016/j.yjmcc.2019.11.148
    [39]
    Miano JM, Long XC. The short and long of noncoding sequences in the control of vascular cell phenotypes[J]. Cell Mol Life Sci, 2015, 72(18): 3457–3488. doi: 10.1007/s00018-015-1936-9
    [40]
    Miano JM, Long XC, Lyu Q. CRISPR links to long noncoding RNA function in mice: a practical approach[J]. Vascul Pharmacol, 2019, 114: 1–12. doi: 10.1016/j.vph.2019.02.004
    [41]
    Isakova A, Fehlmann T, Keller A, et al. A mouse tissue atlas of small noncoding RNA[J]. Proc Natl Acad Sci U S A, 2020, 117(41): 25634–25645. doi: 10.1073/pnas.2002277117
    [42]
    Ratnere I, Dubchak I. Obtaining comparative genomic data with the VISTA family of computational tools[J]. Curr Protoc Bioinformatics, 2009, 26(1): 10.6.1–10.6.17. doi: 10.1002/0471250953.bi1006s26
    [43]
    Economides AN, Frendewey D, Yang P, et al. Conditionals by inversion provide a universal method for the generation of conditional alleles[J]. Proc Natl Acad Sci U S A, 2013, 110(34): E3179–E3188. doi: 10.1073/pnas.1217812110
    [44]
    Guzzardo PM, Rashkova C, Dos Santos RL, et al. A small cassette enables conditional gene inactivation by CRISPR/Cas9[J]. Sci Rep, 2017, 7(1): 16770. doi: 10.1038/s41598-017-16931-z
    [45]
    Xie F, Zhou XY, Lin TT, et al. Production of gene-edited pigs harboring orthologous human mutations via double cutting by CRISPR/Cas9 with long single-stranded DNAs as homology-directed repair templates by zygote injection[J]. Transgenic Res, 2020, 29(5-6): 587–598. doi: 10.1007/s11248-020-00218-7
    [46]
    Nakamura Y, Gojobori T, Ikemura T. Codon usage tabulated from international DNA sequence databases: status for the year 2000[J]. Nucleic Acids Res, 2000, 28(1): 292. doi: 10.1093/nar/28.1.292
    [47]
    Quadros RM, Miura H, Harms DW, et al. Easi-CRISPR: a robust method for one-step generation of mice carrying conditional and insertion alleles using long ssDNA donors and CRISPR ribonucleoproteins[J]. Genome Biol, 2017, 18(1): 92. doi: 10.1186/s13059-017-1220-4
    [48]
    Miura H, Quadros RM, Gurumurthy CB, et al. Easi-CRISPR for creating knock-in and conditional knockout mouse models using long ssDNA donors[J]. Nat Protoc, 2018, 13(1): 195–215. doi: 10.1038/nprot.2017.153
    [49]
    Chu VT, Weber T, Graf R, et al. Efficient generation of Rosa26 knock-in mice using CRISPR/Cas9 in C57BL/6 zygotes[J]. BMC Biotechnol, 2016, 16: 4. doi: 10.1186/s12896-016-0234-4
    [50]
    Gu B, Posfai E, Rossant J. Efficient generation of targeted large insertions by microinjection into two-cell-stage mouse embryos[J]. Nat Biotechnol, 2018, 36(7): 632–637. doi: 10.1038/nbt.4166
    [51]
    Abe T, Inoue KI, Furuta Y, et al. Pronuclear microinjection during s-phase increases the efficiency of CRISPR-Cas9-assisted knockin of large DNA donors in mouse zygotes[J]. Cell Rep, 2020, 31(7): 107653. doi: 10.1016/j.celrep.2020.107653
    [52]
    Yoshimi K, Oka Y, Miyasaka Y, et al. Combi-CRISPR: combination of NHEJ and HDR provides efficient and precise plasmid-based knock-ins in mice and rats[J]. Hum Genet, 2021, 140(2): 277–287. doi: 10.1007/s00439-020-02198-4
    [53]
    Hashimoto M, Takemoto T. Electroporation enables the efficient mRNA delivery into the mouse zygotes and facilitates CRISPR/Cas9-based genome editing[J]. Sci Rep, 2015, 5: 11315. doi: 10.1038/srep11315
    [54]
    Qin WN, Dion SL, Kutny PM, et al. Efficient CRISPR/Cas9-mediated genome editing in mice by zygote electroporation of nuclease[J]. Genetics, 2015, 200(2): 423–430. doi: 10.1534/genetics.115.176594
    [55]
    Wang WB, Kutny PM, Byers SL, et al. Delivery of Cas9 protein into mouse zygotes through a series of electroporation dramatically increases the efficiency of model creation[J]. J Genet Genomics, 2016, 43(5): 319–327. doi: 10.1016/j.jgg.2016.02.004
    [56]
    Chen SA, Lee B, Lee AYF, et al. Highly efficient mouse genome editing by CRISPR ribonucleoprotein electroporation of zygotes[J]. J Biol Chem, 2016, 291(28): 14457–14467. doi: 10.1074/jbc.M116.733154
    [57]
    Tröder SE, Ebert LK, Butt L, et al. An optimized electroporation approach for efficient CRISPR/Cas9 genome editing in murine zygotes[J]. PLoS One, 2018, 13(5): e0196891. doi: 10.1371/journal.pone.0196891
    [58]
    Takahashi G, Gurumurthy CB, Wada K, et al. GONAD: genome-editing via Oviductal nucleic acids delivery system: a novel microinjection independent genome engineering method in mice[J]. Sci Rep, 2015, 5: 11406. doi: 10.1038/srep11406
    [59]
    Gurumurthy CB, Takahashi G, Wada K, et al. GONAD: a novel CRISPR/Cas9 genome editing method that does not require ex vivo handling of embryos[J]. Curr Protoc Hum Genet, 2016, 88(1): 15.8.1–15.8.12. doi: 10.1002/0471142905.hg1508s88
    [60]
    Ohtsuka M, Sato M, Miura H, et al. i-GONAD: a robust method for in situ germline genome engineering using CRISPR nucleases[J]. Genome Biol, 2018, 19(1): 25. doi: 10.1186/s13059-018-1400-x
    [61]
    Gurumurthy CB, Sato M, Nakamura A, et al. Creation of CRISPR-based germline-genome-engineered mice without ex vivo handling of zygotes by i-GONAD[J]. Nat Protoc, 2019, 14(8): 2452–2482. doi: 10.1038/s41596-019-0187-x
    [62]
    Shen B, Zhang J, Wu HY, et al. Generation of gene-modified mice via Cas9/RNA-mediated gene targeting[J]. Cell Res, 2013, 23(5): 720–723. doi: 10.1038/cr.2013.46
    [63]
    Yen ST, Zhang M, Deng JM, et al. Somatic mosaicism and allele complexity induced by CRISPR/Cas9 RNA injections in mouse zygotes[J]. Dev Biol, 2014, 393(1): 3–9. doi: 10.1016/j.ydbio.2014.06.017
    [64]
    Wu Y, Zhang J, Peng BY, et al. Generating viable mice with heritable embryonically lethal mutations using the CRISPR-Cas9 system in two-cell embryos[J]. Nat Commun, 2019, 10(1): 2883. doi: 10.1038/s41467-019-10748-2
    [65]
    Quadros RM, Harms DW, Ohtsuka M, et al. Insertion of sequences at the original provirus integration site of mouse ROSA26 locus using the CRISPR/Cas9 system[J]. FEBS Open Bio, 2015, 5(1): 191–197. doi: 10.1016/j.fob.2015.03.003
    [66]
    Mianné J, Codner GF, Caulder A, et al. Analysing the outcome of CRISPR-aided genome editing in embryos: Screening, genotyping and quality control[J]. Methods, 2017, 121-122: 68–76. doi: 10.1016/j.ymeth.2017.03.016
    [67]
    Parker-Thornburg J. Breeding strategies for genetically modified mice[M]//Larson MA. Transgenic Mouse: Methods and Protocols. New York: Humana, 2020: 163–169, doi: 10.1007/978-1-4939-9837-1_14.
    [68]
    Boroviak K, Fu BY, Yang FT, et al. Revealing hidden complexities of genomic rearrangements generated with Cas9[J]. Sci Rep, 2017, 7(1): 12867. doi: 10.1038/s41598-017-12740-6
    [69]
    Kosicki M, Tomberg K, Bradley A. Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements[J]. Nat Biotechnol, 2018, 36(8): 765–771. doi: 10.1038/nbt.4192
    [70]
    Iyer V, Shen B, Zhang WS, et al. Off-target mutations are rare in Cas9-modified mice[J]. Nat Methods, 2015, 12(6): 479. doi: 10.1038/nmeth.3408
    [71]
    Anderson KR, Haeussler M, Watanabe C, et al. CRISPR off-target analysis in genetically engineered rats and mice[J]. Nat Methods, 2018, 15(7): 512–514. doi: 10.1038/s41592-018-0011-5
    [72]
    Doench JG, Fusi N, Sullender M, et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9[J]. Nat Biotechnol, 2016, 34(2): 184–191. doi: 10.1038/nbt.3437
    [73]
    Vakulskas CA, Dever DP, Rettig GR, et al. A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells[J]. Nat Med, 2018, 24(8): 1216–1224. doi: 10.1038/s41591-018-0137-0
    [74]
    McBeath E, Parker-Thornburg J, Fujii Y, et al. Rapid evaluation of CRISPR guides and donors for engineering mice[J]. Genes, 2020, 11(6): 628. doi: 10.3390/genes11060628
    [75]
    Muzumdar MD, Tasic B, Miyamichi K, et al. A global double-fluorescent Cre reporter mouse[J]. Genes, 2007, 45(9): 593–605. doi: 10.1002/dvg.20335
    [76]
    Madisen L, Garner AR, Shimaoka D, et al. Transgenic mice for intersectional targeting of neural sensors and effectors with high specificity and performance[J]. Neuron, 2015, 85(5): 942–958. doi: 10.1016/j.neuron.2015.02.022
    [77]
    Daigle TL, Madisen L, Hage TA, et al. A suite of transgenic driver and reporter mouse lines with enhanced brain-cell-type targeting and functionality[J]. Cell, 2018, 174(2): 465–480. doi: 10.1016/j.cell.2018.06.035
    [78]
    Gurumurthy CB, Quadros RM, Richardson GP, et al. Genetically modified mouse models to help fight COVID-19[J]. Nat Protoc, 2020, 15(12): 3777–3787. doi: 10.1038/s41596-020-00403-2
    [79]
    Müller U. Ten years of gene targeting: targeted mouse mutants, from vector design to phenotype analysis[J]. Mech Dev, 1999, 82(1-2): 3–21. doi: 10.1016/s0925-4773(99)00021-0
    [80]
    Palmiter RD, Brinster RL. Germ-line transformation of mice[J]. Annu Rev Genet, 1986, 20: 465–499. doi: 10.1146/annurev.ge.20.120186.002341
    [81]
    Xu WH. Microinjection and micromanipulation: a historical perspective[M]//Liu CY, Du YB. Microinjection: Methods and Protocols. New York: Humana Press, 2019: 1–16, doi: 10.1007/978-1-4939-8831-0_1.
    [82]
    Anastassiadis K, Glaser S, Kranz A, et al. A practical summary of site-specific recombination, conditional mutagenesis, and tamoxifen induction of CreERT2[J]. Methods Enzymol, 2010, 477: 109–123. doi: 10.1016/S0076-6879(10)77007-5
    [83]
    Nagy A. Cre recombinase: the universal reagent for genome tailoring[J]. Genesis, 2000, 26(2): 99–109. doi: 10.1002/(SICI)1526-968X(200002)26:2<99::AID-GENE1>3.0.CO;2-B
    [84]
    Gurumurthy CB, Lloyd KCK. Generating mouse models for biomedical research: technological advances[J]. Dis Model Mech, 2019, 12(1): dmm029462. doi: 10.1242/dmm.029462
    [85]
    Miano JM, Zhu QM, Lowenstein CJ. A CRISPR path to engineering new genetic mouse models for cardiovascular research[J]. Arterioscler Thromb Vasc Biol, 2016, 36(6): 1058–1075. doi: 10.1161/ATVBAHA.116.304790
    [86]
    Doetschman T, Gregg RG, Maeda N, et al. Targetted correction of a mutant HPRT gene in mouse embryonic stem cells[J]. Nature, 1987, 330(6148): 576–578. doi: 10.1038/330576a0
    [87]
    Thomas KR, Capecchi MR. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells[J]. Cell, 1987, 51(3): 503–512. doi: 10.1016/0092-8674(87)90646-5
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (360) PDF downloads(81) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return