Citation: | Cong-Rong Li, Ruo-Lei Wang, Shi-Ya Xie, Yan-Ru Li, Lei-Lei Gao, Zhi-Xia Yang, Dong Zhang. Fidgetin knockdown and knockout influences female reproduction distinctly in mice[J]. The Journal of Biomedical Research, 2022, 36(4): 269-279. doi: 10.7555/JBR.36.20220086 |
[1] |
Roll-Mecak A, Vale RD. Structural basis of microtubule severing by the hereditary spastic paraplegia protein spastin[J]. Nature, 2008, 451(7176): 363–367. doi: 10.1038/nature06482
|
[2] |
Johjima A, Noi K, Nishikori S, et al. Microtubule severing by katanin p60 AAA+ ATPase requires the C-terminal acidic tails of both α- and β-tubulins and basic amino acid residues in the AAA+ ring pore[J]. J Biol Chem, 2015, 290(18): 11762–11770. doi: 10.1074/jbc.M114.614768
|
[3] |
Sharp DJ, Ross JL. Microtubule-severing enzymes at the cutting edge[J]. J Cell Sci, 2012, 125(11): 2561–2569. doi: 10.1242/jcs.101139
|
[4] |
Roll-Mecak A, McNally FJ. Microtubule-severing enzymes[J]. Curr Opin Cell Biol, 2010, 22(1): 96–103. doi: 10.1016/j.ceb.2009.11.001
|
[5] |
Kahn OI, Baas PW. Microtubules and growth cones: motors drive the turn[J]. Trends Neurosci, 2016, 39(7): 433–440. doi: 10.1016/j.tins.2016.04.009
|
[6] |
Nakamura M. Microtubule nucleating and severing enzymes for modifying microtubule array organization and cell morphogenesis in response to environmental cues[J]. New Phytol, 2015, 205(3): 1022–1027. doi: 10.1111/nph.12932
|
[7] |
Errico A, Ballabio A, Rugarli EI. Spastin, the protein mutated in autosomal dominant hereditary spastic paraplegia, is involved in microtubule dynamics[J]. Hum Mol Genet, 2002, 11(2): 153–163. doi: 10.1093/hmg/11.2.153
|
[8] |
Smith LB, Milne L, Nelson N, et al. KATNAL1 regulation of sertoli cell microtubule dynamics is essential for spermiogenesis and male fertility[J]. PLoS Genet, 2012, 8(5): e1002697. doi: 10.1371/journal.pgen.1002697
|
[9] |
Dunleavy JEM, Okuda H, O'Connor AE, et al. Katanin-like 2 (KATNAL2) functions in multiple aspects of haploid male germ cell development in the mouse[J]. PLoS Genet, 2017, 13(11): e1007078. doi: 10.1371/journal.pgen.1007078
|
[10] |
Cox GA, Mahaffey CL, Nystuen A, et al. The mouse fidgetin gene defines a new role for AAA family proteins in mammalian development[J]. Nat Genet, 2000, 26(2): 198–202. doi: 10.1038/79923
|
[11] |
Yang Y, Mahaffey CL, Bérubé N, et al. Functional characterization of fidgetin, an AAA-family protein mutated in fidget mice[J]. Exp Cell Res, 2005, 304(1): 50–58. doi: 10.1016/j.yexcr.2004.11.014
|
[12] |
L'Hôte D, Vatin M, Auer J, et al. Fidgetin-like1 is a strong candidate for a dynamic impairment of male meiosis leading to reduced testis weight in mice[J]. PLoS One, 2011, 6(11): e27582. doi: 10.1371/journal.pone.0027582
|
[13] |
Fassier C, Fréal A, Gasmi L, et al. Motor axon navigation relies on Fidgetin-like 1-driven microtubule plus end dynamics[J]. J Cell Biol, 2018, 217(5): 1719–1738. doi: 10.1083/jcb.201604108
|
[14] |
Kumar R, Duhamel M, Coutant E, et al. Antagonism between BRCA2 and FIGL1 regulates homologous recombination[J]. Nucl Acids Res, 2019, 47(10): 5170–5180. doi: 10.1093/nar/gkz225
|
[15] |
Yuan J, Chen J. FIGNL1-containing protein complex is required for efficient homologous recombination repair[J]. Proc Natl Acad Sci U S A, 2013, 110(26): 10640–10645. doi: 10.1073/pnas.1220662110
|
[16] |
Havlicek S, Kohl Z, Mishra HK, et al. Gene dosage-dependent rescue of HSP neurite defects in SPG4 patients' neurons[J]. Hum Mol Genet, 2014, 23(10): 2527–2541. doi: 10.1093/hmg/ddt644
|
[17] |
Kuo Y, Howard J. Cutting, amplifying, and aligning microtubules with severing enzymes[J]. Trends Cell Biol, 2021, 31(1): 50–61. doi: 10.1016/j.tcb.2020.10.004
|
![]() |
![]() |