Citation: | Wang Le Yi, McKelvey George M., Wang Hong. Multi-outcome predictive modelling of anesthesia patients[J]. The Journal of Biomedical Research, 2019, 33(6): 430-434. DOI: 10.7555/JBR.33.20180088 |
[1] |
Nakayama M, Ichinose H, Yamamoto S, et al. The effect of fentanyl on hemodynamic and bispectral index changes during anesthesia induction with propofol[J]. J Clin Anesth, 2002, 14(2): 146–149. doi: 10.1016/S0952-8180(01)00375-0
|
[2] |
Tan ZB, Kaddoum R, Wang LY, et al. Decision-oriented multi-outcome modeling for anesthesia patients[J]. Open Biomed Eng J, 2010, 4: 113–122. doi: 10.2174/1874120701004010113
|
[3] |
Wang LY, Yin GG, Wang H. Identification of wiener models with anesthesia applications[J]. Int J Pure Appl Math Sci, 2004, 3: 35–61.
|
[4] |
Cihoric M, Tengberg LT, Bay-Nielsen M, et al. Prediction of outcome after emergency high-risk intra-abdominal surgery using the surgical Apgar score[J]. Anesth Analg, 2016, 123(6): 1516–1521. doi: 10.1213/ANE.0000000000001501
|
[5] |
Moonesinghe SR, Mythen MG, Das P, et al. Risk stratification tools for predicting morbidity and mortality in adult patients undergoing major surgery: qualitative systematic review[J]. Anesthesiology, 2013, 119(4): 959–981. doi: 10.1097/ALN.0b013e3182a4e94d
|
[6] |
Le Manach Y, Collins G, Rodseth R, et al. Preoperative score to predict postoperative mortality (POSPOM): derivation and validation[J]. Anesthesiology, 2016, 124(3): 570–579. doi: 10.1097/ALN.0000000000000972
|
[7] |
Fitzgerald M, Cameron P, Mackenzie C, et al. Trauma resuscitation errors and computer-assisted decision support[J]. Arch Surg, 2011, 146(2): 218–225. doi: 10.1001/archsurg.2010.333
|
[8] |
Grassi FR, Rapone B, Catanzaro FS, et al. Effectiveness of computer-assisted anesthetic delivery system (STATM) in dental implant surgery: a prospective study[J]. ORAL Implantol, 2017, 10(4): 381–389. doi: 10.11138/orl/2017.10.4.381
|
[9] |
Wang LY, Wang H, Yin GG. System for identifying patient response to anesthesia infusion: US, 8998808[P]. 2015-04-01.
|
[10] |
Wang LY, Wang H, Yin GG. Anesthesia infusion models: knowledge-based real-time identification via stochastic approximation[C]//Proceedings of the 41st IEEE Conference on Decision and Control. Las Vegas, USA: IEEE, 2002.
|
[11] |
Gentilini A, Rossoni-Gerosa M, Frei CW, et al. Modeling and closed-loop control of hypnosis by means of bispectral index (BIS) with isoflurane[J]. IEEE Trans Biomed Eng, 2001, 48(8): 874–889. doi: 10.1109/10.936364
|
[12] |
Furutani E, Sawaguchi Y, Shirakami G, et al. A hypnosis control system using a model predictive controller with online identification of individual parameters[C]//Proceedings of 2005 IEEE Conference on Control Applications. Toronto, Canada: IEEE, 2005.
|
[13] |
Glen JB, Schwilden H, Stanski DR. Workshop on safe feedback control of anesthetic drug delivery. Schloss Reinhartshausen, Germany. June 29, 1998[J]. Anesthesiology, 1999, 91(2): 600–601. doi: 10.1097/00000542-199908000-00067
|
[14] |
Nunes CS, Mahfouf M, Linkens DA, et al. Modelling and multivariable control in anaesthesia using neural-fuzzy paradigms: Part I. Classification of depth of anaesthesia and development of a patient model[J]. Artif Intell Med, 2005, 35(3): 195–206. doi: 10.1016/j.artmed.2004.12.004
|
[15] |
Lin HH, Beck CL, Bloom MJ. On the use of multivariable piecewise-linear models for predicting human response to anesthesia[J]. IEEE Trans Biomed Eng, 2004, 51(11): 1876–1887. doi: 10.1109/TBME.2004.831541
|
[16] |
Shieh JS, Abbod MF, Hsu CY, et al. Monitoring and control of anesthesia using multivariable self-organizing fuzzy logic structure[M]//Jin YC, Wang LP. Fuzzy Systems in Bioinformatics and Computational Biology. Berlin: Springer, 2009: 273–295.
|
[17] |
Sreenivas Y, Lakshminarayanan S, Rangaiah GP. Automatic regulation of anesthesia by simultaneous administration of two anesthetic drugs using model predictive control[M]//Magjarevic R, Nagel JH. World Congress on Medical Physics and Biomedical Engineering 2006–2007. Berlin: Springer, 2007: 82–86.
|
[18] |
Magjarevic R, Nagel JH. Evaluation of active contour-based techniques toward bone segmentation from CT images[M]// Kim SI, Suh TS. World congress on medical physics and biomedical engineering 2006. Berlin: Springer, 2006: 3121–3125.
|
[19] |
Wang H, Wang LY, Zheng H, et al. Lung sound/noiseseparation for anesthesia respiratory monitoring. WSEAS Transacts Syst, 2004, 3(4): 1839–1844.
|
[20] |
Wang H, Wang LY. Continuous intro-operative respiratory auscultation in anesthesia[C]//SENSORS, 2003 IEEE. Toronto, Canada: IEEE, 2003, 2: 1002–1005.
|
[21] |
Wang LY, Yin G, Wang H. Wang H. Reliable nonlinear system identification in medical applications[J]. IFAC Proceed Vol, 2003, 36(16): 133–138. doi: 10.1016/S1474-6670(17)34751-1
|
[1] | Natalia V. Naryzhnaya, Leonid N. Maslov, Sergey V. Popov, Alexandr V. Mukhomezyanov, Vyacheslav V. Ryabov, Boris K. Kurbatov, Alexandra E. Gombozhapova, Nirmal Singh, Feng Fu, Jian-Ming Pei, Sergey V. Logvinov. Pyroptosis is a drug target for prevention of adverse cardiac remodeling: The crosstalk between pyroptosis, apoptosis, and autophagy[J]. The Journal of Biomedical Research, 2022, 36(6): 375-389. DOI: 10.7555/JBR.36.20220123 |
[2] | Yong-Dae Kim, Dong-Hyuk Yim, Sang-Yong Eom, Ji Yeoun Lee, Heon Kim. The effect of sunblock against oxidative stress in farmers: a pilot study[J]. The Journal of Biomedical Research, 2017, 31(4): 344-349. DOI: 10.7555/JBR.31.20160092 |
[3] | Iyaswamy Ashok, Rathinasamy Sheeladevi, Dapkupar Wankhar. Acute effect of aspartame-induced oxidative stress in Wistar albino rat brain[J]. The Journal of Biomedical Research, 2015, 29(5): 390-396. DOI: 10.7555/JBR.28.20120118 |
[4] | Xiaofan Yang, Bin Sun, Huijuan Wang, Cheng Yin, Xiaole Wang, Xiaohui Ji. Increased serum IL-10 in lupus patients promotes apoptosis of T cell subsets via the caspase 8 pathway initiated by Fas signaling[J]. The Journal of Biomedical Research, 2015, 29(3): 232-240. DOI: 10.7555/JBR.29.20130037 |
[5] | Lintao Wang, Yanyan Peng, Kaikai Shi, Haixiao Wang, Jianlei Lu, Yanli Li, Changyan Ma. Osthole inhibits proliferation of human breast cancer cells by inducing cell cycle arrest and apoptosis[J]. The Journal of Biomedical Research, 2015, 29(2): 132-138. DOI: 10.7555/JBR.27.20120115 |
[6] | Pengpeng Jin, Xiaoli Wang, Fei Chang, Yinyang Bai, Yingchun Li, Rong Zhou, Ling Chen. Low dose bisphenol A impairs spermatogenesis by suppressing reproductive hormone production and promoting germ cell apoptosis in adult rats[J]. The Journal of Biomedical Research, 2013, 27(2): 135-144. DOI: 10.7555/JBR.27.20120076 |
[7] | Yan Li, Yi Jiang, Yicong Wan, Lin Zhang, Weiwei Tang, Jingjing Ma, Shan Wu, Wenjun Cheng. Medroxyprogestogen enhances apoptosis of SKOV-3 cells via inhibition of the PI3K/Akt signaling pathway[J]. The Journal of Biomedical Research, 2013, 27(1): 43-50. DOI: 10.7555/JBR.27.20120051 |
[8] | Danyang Ren, Quan Zhu, Jiantao Li, Tuanzhu Ha, Xiaohui Wang, Yuehua Li. Overexpression of angiopoietin-1 reduces doxorubicin-induced apoptosis in cardiomyocytes[J]. The Journal of Biomedical Research, 2012, 26(6): 432-438. DOI: 10.7555/JBR.26.20120006 |
[9] | Xiaozheng Zhong, Xiaoyu Li, Lingling Qian, Yiming Xu, Yan Lu, Jing Zhang, Nan Li, Xudong Zhu, Jingjing Ben, Qing Yang, Qi Chen. Glycine attenuates myocardial ischemia-reperfusion injury by inhibiting myocardial apoptosis in rats[J]. The Journal of Biomedical Research, 2012, 26(5): 346-354. DOI: 10.7555/JBR.26.20110124 |
[10] | Lingyun Li, Jing Chi, Feng Zhou, Dandan Guo, Fang Wang, Genyan Liu, Chun Zhang, Kun Yao. Human herpesvirus 6A induces apoptosis of HSB-2 cells via a mitochondrion-related caspase pathway[J]. The Journal of Biomedical Research, 2010, 24(6): 444-451. DOI: 10.1016/S1674-8301(10)60059-0 |
1. | Hou Y, Lv B, Du J, et al. Sulfide regulation and catabolism in health and disease. Signal Transduct Target Ther, 2025, 10(1): 174. DOI:10.1038/s41392-025-02231-w |
2. | Hou Y, Lv B, Du J, et al. Sulfide regulation and catabolism in health and disease. Signal Transduct Target Ther, 2025, 10(1): 174. DOI:10.1038/s41392-025-02231-w |
3. | Alotaibi K, Arulkumaran N, Dyson A, et al. Therapeutic strategies to ameliorate mitochondrial oxidative stress in ischaemia-reperfusion injury: A narrative review. Clin Sci (Lond), 2025, 139(3): 259-80. DOI:10.1042/CS20242074 |
4. | Pagliaro P, Weber NC, Femminò S, et al. Gasotransmitters and noble gases in cardioprotection: unraveling molecular pathways for future therapeutic strategies. Basic Res Cardiol, 2024, 119(4): 509-544. DOI:10.1007/s00395-024-01061-1 |
5. | Jin YQ, Yuan H, Liu YF, et al. Role of hydrogen sulfide in health and disease. MedComm (2020), 2024, 5(9): e661. DOI:10.1002/mco2.661 |
6. | Pan S, Yan H, Zhu J, et al. GYY4137, as a slow-releasing H2S donor, ameliorates sodium deoxycholate-induced chronic intestinal barrier injury and gut microbiota dysbiosis. Front Pharmacol, 2024, 15: 1476407. DOI:10.3389/fphar.2024.1476407 |
7. | Sun X, Wu S, Mao C, et al. Therapeutic Potential of Hydrogen Sulfide in Ischemia and Reperfusion Injury. Biomolecules, 2024, 14(7): 740. DOI:10.3390/biom14070740 |
8. | Farzaei MH, Ramezani-Aliakbari F, Ramezani-Aliakbari M, et al. Regulatory effects of trimetazidine in cardiac ischemia/reperfusion injury. Naunyn Schmiedebergs Arch Pharmacol, 2023, 396(8): 1633-1646. DOI:10.1007/s00210-023-02469-7 |
9. | Farzaei MH, Ramezani-Aliakbari F, Ramezani-Aliakbari M, et al. Regulatory effects of trimetazidine in cardiac ischemia/reperfusion injury. Naunyn Schmiedebergs Arch Pharmacol, 2023, 396(8): 1633-1646. DOI:10.1007/s00210-023-02469-7 |
10. | Hu Q, Lukesh JC 3rd. H2S Donors with Cytoprotective Effects in Models of MI/R Injury and Chemotherapy-Induced Cardiotoxicity. Antioxidants (Basel), 2023, 12(3): 650. DOI:10.3390/antiox12030650 |
11. | Zhou M, Chen JY, Chao ML, et al. S-nitrosylation of c-Jun N-terminal kinase mediates pressure overload-induced cardiac dysfunction and fibrosis. Acta Pharmacol Sin, 2022, 43(3): 602-612. DOI:10.1038/s41401-021-00674-9 |
12. | Khattak S, Rauf MA, Khan NH, et al. Hydrogen Sulfide Biology and Its Role in Cancer. Molecules, 2022, 27(11): 3389. DOI:10.3390/molecules27113389 |
13. | Zhou M, Chen JY, Chao ML, et al. S-nitrosylation of c-Jun N-terminal kinase mediates pressure overload-induced cardiac dysfunction and fibrosis. Acta Pharmacol Sin, 2022, 43(3): 602-612. DOI:10.1038/s41401-021-00674-9 |
14. | Khattak S, Rauf MA, Khan NH, et al. Hydrogen Sulfide Biology and Its Role in Cancer. Molecules, 2022, 27(11): 3389. DOI:10.3390/molecules27113389 |
15. | McCook O, Denoix N, Radermacher P, et al. H2S and Oxytocin Systems in Early Life Stress and Cardiovascular Disease. J Clin Med, 2021, 10(16): 3484. DOI:10.3390/jcm10163484 |
16. | McCook O, Denoix N, Radermacher P, et al. H2S and Oxytocin Systems in Early Life Stress and Cardiovascular Disease. J Clin Med, 2021, 10(16): 3484. DOI:10.3390/jcm10163484 |
17. | Zhang Y, Gong W, Xu M, et al. Necroptosis Inhibition by Hydrogen Sulfide Alleviated Hypoxia-Induced Cardiac Fibroblasts Proliferation via Sirtuin 3. Int J Mol Sci, 2021, 22(21): 11893. DOI:10.3390/ijms222111893 |
18. | Testai L, Brancaleone V, Flori L, et al. Modulation of EndMT by Hydrogen Sulfide in the Prevention of Cardiovascular Fibrosis. Antioxidants (Basel), 2021, 10(6): 910. DOI:10.3390/antiox10060910 |
19. | Denoix N, McCook O, Ecker S, et al. The Interaction of the Endogenous Hydrogen Sulfide and Oxytocin Systems in Fluid Regulation and the Cardiovascular System. Antioxidants (Basel), 2020, 9(8): 748. DOI:10.3390/antiox9080748 |
20. | Pieretti JC, Junho CVC, Carneiro-Ramos MS, et al. H2S- and NO-releasing gasotransmitter platform: A crosstalk signaling pathway in the treatment of acute kidney injury. Pharmacol Res, 2020, 161: 105121. DOI:10.1016/j.phrs.2020.105121 |
21. | Soo E, Marsh C, Steiner R, et al. Optimizing organs for transplantation; advancements in perfusion and preservation methods. Transplant Rev (Orlando), 2020, 34(1): 100514. DOI:10.1016/j.trre.2019.100514 |
22. | Chen LJ, Ning JZ, Cheng F, et al. Comparison of Intraperitoneal and Intratesticular GYY4137 Therapy for the Treatment of Testicular Ischemia Reperfusion Injury in Rats. Curr Med Sci, 2020, 40(2): 332-338. DOI:10.1007/s11596-020-2180-6 |
23. | Yurinskaya MM, Krasnov GS, Kulikova DA, et al. H2S counteracts proinflammatory effects of LPS through modulation of multiple pathways in human cells. Inflamm Res, 2020, 69(5): 481-495. DOI:10.1007/s00011-020-01329-x |
24. | Kang SC, Sohn EH, Lee SR. Hydrogen Sulfide as a Potential Alternative for the Treatment of Myocardial Fibrosis. Oxid Med Cell Longev, 2020, 2020: 4105382. DOI:10.1155/2020/4105382 |
25. | Newton TD, Pluth MD. Development of a hydrolysis-based small-molecule hydrogen selenide (H2Se) donor. Chem Sci, 2019, 10(46): 10723-10727. DOI:10.1039/c9sc04616j |
26. | Zheng W, Liu C. The cystathionine γ-lyase/hydrogen sulfide pathway mediates the trimetazidine-induced protection of H9c2 cells against hypoxia/reoxygenation-induced apoptosis and oxidative stress. Anatol J Cardiol, 2019, 22(3): 102-111. DOI:10.14744/AnatolJCardiol.2019.83648 |
27. | Wang W, Liu H, Lu Y, et al. Controlled-releasing hydrogen sulfide donor based on dual-modal iron oxide nanoparticles protects myocardial tissue from ischemia-reperfusion injury. Int J Nanomedicine, 2019, 14: 875-888. DOI:10.2147/IJN.S186225 |
28. | Cao X, Ding L, Xie ZZ, et al. A Review of Hydrogen Sulfide Synthesis, Metabolism, and Measurement: Is Modulation of Hydrogen Sulfide a Novel Therapeutic for Cancer?. Antioxid Redox Signal, 2019, 31(1): 1-38. DOI:10.1089/ars.2017.7058 |
29. | Zheng Q, Pan L, Ji Y. H 2S protects against diabetes-accelerated atherosclerosis by preventing the activation of NLRP3 inflammasome. J Biomed Res, 2019, 34(2): 94-102. DOI:10.7555/JBR.33.20190071 |
30. | Maassen H, Hendriks KDW, Venema LH, et al. Hydrogen sulphide-induced hypometabolism in human-sized porcine kidneys. PLoS One, 2019, 14(11): e0225152. DOI:10.1371/journal.pone.0225152 |
31. | Wang W, Liu H, Lu Y, et al. Controlled-releasing hydrogen sulfide donor based on dual-modal iron oxide nanoparticles protects myocardial tissue from ischemia-reperfusion injury. Int J Nanomedicine, 2019, 14: 875-888. DOI:10.2147/IJN.S186225 |
32. | Cao X, Ding L, Xie ZZ, et al. A Review of Hydrogen Sulfide Synthesis, Metabolism, and Measurement: Is Modulation of Hydrogen Sulfide a Novel Therapeutic for Cancer?. Antioxid Redox Signal, 2019, 31(1): 1-38. DOI:10.1089/ars.2017.7058 |
33. | Zheng W, Liu C. The cystathionine γ-lyase/hydrogen sulfide pathway mediates the trimetazidine-induced protection of H9c2 cells against hypoxia/reoxygenation-induced apoptosis and oxidative stress. Anatol J Cardiol, 2019, 22(3): 102-111. DOI:10.14744/AnatolJCardiol.2019.83648 |
34. | Luo H, Song S, Chen Y, et al. Inhibitor 1 of Protein Phosphatase 1 Regulates Ca2+/Calmodulin-Dependent Protein Kinase II to Alleviate Oxidative Stress in Hypoxia-Reoxygenation Injury of Cardiomyocytes. Oxid Med Cell Longev, 2019, 2019: 2193019. DOI:10.1155/2019/2193019 |
35. | Cao X, Zhang W, Moore PK, et al. Protective Smell of Hydrogen Sulfide and Polysulfide in Cisplatin-Induced Nephrotoxicity. Int J Mol Sci, 2019, 20(2): 313. DOI:10.3390/ijms20020313 |
36. | Van Dingenen J, Pieters L, Vral A, et al. The H2S-Releasing Naproxen Derivative ATB-346 and the Slow-Release H2S Donor GYY4137 Reduce Intestinal Inflammation and Restore Transit in Postoperative Ileus. Front Pharmacol, 2019, 10: 116. DOI:10.3389/fphar.2019.00116 |
37. | Zhang Y, Liu X, Zhang L, et al. Metformin Protects against H2O2-Induced Cardiomyocyte Injury by Inhibiting the miR-1a-3p/GRP94 Pathway. Mol Ther Nucleic Acids, 2018, 13: 189-197. DOI:10.1016/j.omtn.2018.09.001 |
38. | Ning JZ, Li W, Cheng F, et al. The protective effects of GYY4137 on ipsilateral testicular injury in experimentally varicocele-induced rats. Exp Ther Med, 2018, 15(1): 433-439. DOI:10.3892/etm.2017.5417 |
39. | Zeng C, Jiang W, Zheng R, et al. Cardioprotection of tilianin ameliorates myocardial ischemia-reperfusion injury: Role of the apoptotic signaling pathway. PLoS One, 2018, 13(3): e0193845. DOI:10.1371/journal.pone.0193845 |
40. | Zhou X, Tang S, Hu K, et al. DL-Propargylglycine protects against myocardial injury induced by chronic intermittent hypoxia through inhibition of endoplasmic reticulum stress. Sleep Breath, 2018, 22(3): 853-863. DOI:10.1007/s11325-018-1656-0 |
41. | Sun X, Wang W, Dai J, et al. A Long-Term and Slow-Releasing Hydrogen Sulfide Donor Protects against Myocardial Ischemia/Reperfusion Injury. Sci Rep, 2017, 7(1): 3541. DOI:10.1038/s41598-017-03941-0 |
42. | Szabo C, Papapetropoulos A. International Union of Basic and Clinical Pharmacology. CII: Pharmacological Modulation of H2S Levels: H2S Donors and H2S Biosynthesis Inhibitors. Pharmacol Rev, 2017, 69(4): 497-564. DOI:10.1124/pr.117.014050 |
43. | Sun Y, Huang Y, Yu W, et al. Sulfhydration-associated phosphodiesterase 5A dimerization mediates vasorelaxant effect of hydrogen sulfide. Oncotarget, 2017, 8(19): 31888-31900. DOI:10.18632/oncotarget.16649 |
44. | Pang Z, Zhao W, Yao Z. Cardioprotective Effects of Nicorandil on Coronary Heart Disease Patients Undergoing Elective Percutaneous Coronary Intervention. Med Sci Monit, 2017, 23: 2924-2930. DOI:10.12659/msm.902324 |
45. | Bazhanov N, Escaffre O, Freiberg AN, et al. Broad-Range Antiviral Activity of Hydrogen Sulfide Against Highly Pathogenic RNA Viruses. Sci Rep, 2017, 7: 41029. DOI:10.1038/srep41029 |
46. | Sun Y, Huang Y, Yu W, et al. Sulfhydration-associated phosphodiesterase 5A dimerization mediates vasorelaxant effect of hydrogen sulfide. Oncotarget, 2017, 8(19): 31888-31900. DOI:10.18632/oncotarget.16649 |
47. | Cao X, Bian JS. The Role of Hydrogen Sulfide in Renal System. Front Pharmacol, 2016, 7: 385. DOI:10.3389/fphar.2016.00385 |
48. | Tian XH, Liu CL, Jiang HL, et al. Cardioprotection provided by Echinatin against ischemia/reperfusion in isolated rat hearts. BMC Cardiovasc Disord, 2016, 16: 119. DOI:10.1186/s12872-016-0294-3 |
49. | Xu J, Tang Y, Bei Y, et al. miR-19b attenuates H2O2-induced apoptosis in rat H9C2 cardiomyocytes via targeting PTEN. Oncotarget, 2016, 7(10): 10870-8. DOI:10.18632/oncotarget.7678 |
50. | Haase T, Börnigen D, Müller C, et al. Systems Medicine as an Emerging Tool for Cardiovascular Genetics. Front Cardiovasc Med, 2016, 3: 27. DOI:10.3389/fcvm.2016.00027 |
51. | Cao X, Bian JS. The Role of Hydrogen Sulfide in Renal System. Front Pharmacol, 2016, 7: 385. DOI:10.3389/fphar.2016.00385 |
52. | Tian XH, Liu CL, Jiang HL, et al. Cardioprotection provided by Echinatin against ischemia/reperfusion in isolated rat hearts. BMC Cardiovasc Disord, 2016, 16: 119. DOI:10.1186/s12872-016-0294-3 |
53. | Xu J, Tang Y, Bei Y, et al. miR-19b attenuates H2O2-induced apoptosis in rat H9C2 cardiomyocytes via targeting PTEN. Oncotarget, 2016, 7(10): 10870-8. DOI:10.18632/oncotarget.7678 |
54. | Singh SB, Lin HC. Hydrogen Sulfide in Physiology and Diseases of the Digestive Tract. Microorganisms, 2015, 3(4): 866-89. DOI:10.3390/microorganisms3040866 |
55. | Singh SB, Lin HC. Hydrogen Sulfide in Physiology and Diseases of the Digestive Tract. Microorganisms, 2015, 3(4): 866-89. DOI:10.3390/microorganisms3040866 |