Citation: | Hongyan Li, Zhiyou Cai. SIRT3 regulates mitochondrial biogenesis in aging-related diseases[J]. The Journal of Biomedical Research, 2023, 37(2): 77-88. doi: 10.7555/JBR.36.20220078 |
[1] |
Ferrucci L, Giallauria F, Guralnik JM. Epidemiology of aging[J]. Radiol Clin North Am, 2008, 46(4): 643–652. doi: 10.1016/j.rcl.2008.07.005
|
[2] |
Jaul E, Barron J. Age-related diseases and clinical and public health implications for the 85 years old and over population[J]. Front Public Health, 2017, 5: 335. doi: 10.3389/fpubh.2017.00335
|
[3] |
Li Z, Zhang Z, Ren Y, et al. Aging and age-related diseases: from mechanisms to therapeutic strategies[J]. Biogerontology, 2021, 22(2): 165–187. doi: 10.1007/s10522-021-09910-5
|
[4] |
Jang J, Blum A, Liu J, et al. The role of mitochondria in aging[J]. J Clin Invest, 2018, 128(9): 3662–3670. doi: 10.1172/JCI120842
|
[5] |
Huang W, Huang Y, Huang R, et al. SIRT3 expression decreases with reactive oxygen species generation in rat cortical neurons during early brain injury induced by experimental subarachnoid hemorrhage[J]. Biomed Res Int, 2016, 2016: 8263926. doi: 10.1155/2016/8263926
|
[6] |
Frye RA. Characterization of five human cDNAs with homology to the yeast SIR2 gene: sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity[J]. Biochem Biophys Res Commun, 1999, 260(1): 273–279. doi: 10.1006/bbrc.1999.0897
|
[7] |
Almeida M, Porter RM. Sirtuins and FoxOs in osteoporosis and osteoarthritis[J]. Bone, 2019, 121: 284–292. doi: 10.1016/j.bone.2019.01.018
|
[8] |
Jeong SM, Haigis MC. Sirtuins in cancer: a balancing act between genome stability and metabolism[J]. Mol Cells, 2015, 38(9): 750–758. doi: 10.14348/molcells.2015.0167
|
[9] |
Bause AS, Haigis MC. SIRT3 regulation of mitochondrial oxidative stress[J]. Exp Gerontol, 2013, 48(7): 634–639. doi: 10.1016/j.exger.2012.08.007
|
[10] |
Lombard DB, Alt FW, Cheng HL, et al. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation[J]. Mol Cell Biol, 2007, 27(24): 8807–8814. doi: 10.1128/MCB.01636-07
|
[11] |
Fu X, Li K, Niu Y, et al. The mTOR/PGC-1α/SIRT3 pathway drives reductive glutamine metabolism to reduce oxidative stress caused by ISKNV in CPB cells[J]. Microbiol Spectr, 2022, 10(1): e0231021. doi: 10.1128/spectrum.02310-21
|
[12] |
Wu J, Zeng Z, Zhang W, et al. Emerging role of SIRT3 in mitochondrial dysfunction and cardiovascular diseases[J]. Free Radic Res, 2019, 53(2): 139–149. doi: 10.1080/10715762.2018.1549732
|
[13] |
Chen T, Liu J, Li N, et al. Mouse SIRT3 attenuates hypertrophy-related lipid accumulation in the heart through the deacetylation of LCAD[J]. PLoS One, 2015, 10(3): e0118909. doi: 10.1371/journal.pone.0118909
|
[14] |
Liu J, Li D, Zhang T, et al. SIRT3 protects hepatocytes from oxidative injury by enhancing ROS scavenging and mitochondrial integrity[J]. Cell Death Dis, 2017, 8(10): e3158. doi: 10.1038/cddis.2017.564
|
[15] |
Xin T, Lu C. SirT3 activates AMPK-related mitochondrial biogenesis and ameliorates sepsis-induced myocardial injury[J]. Aging, 2020, 12(16): 16224–16237. doi: 10.18632/aging.103644
|
[16] |
Bellizzi D, Rose G, Cavalcante P, et al. A novel VNTR enhancer within the SIRT3 gene, a human homologue of SIR2, is associated with survival at oldest ages[J]. Genomics, 2005, 85(2): 258–263. doi: 10.1016/j.ygeno.2004.11.003
|
[17] |
Kincaid B, Bossy-Wetzel E. Forever young: SIRT3 a shield against mitochondrial meltdown, aging, and neurodegeneration[J]. Front Aging Neurosci, 2013, 5: 48. doi: 10.3389/fnagi.2013.00048
|
[18] |
Rose G, Dato S, Altomare K, et al. Variability of the SIRT3 gene, human silent information regulator Sir2 homologue, and survivorship in the elderly[J]. Exp Gerontol, 2003, 38(10): 1065–1070. doi: 10.1016/S0531-5565(03)00209-2
|
[19] |
Hirschey MD, Shimazu T, Jing E, et al. SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome[J]. Mol Cell, 2011, 44(2): 177–190. doi: 10.1016/j.molcel.2011.07.019
|
[20] |
McDonnell E, Peterson BS, Bomze HM, et al. SIRT3 regulates progression and development of diseases of aging[J]. Trends Endocrinol Metab, 2015, 26(9): 486–492. doi: 10.1016/j.tem.2015.06.001
|
[21] |
Meng H, Yan W, Lei Y, et al. SIRT3 regulation of mitochondrial quality control in neurodegenerative diseases[J]. Front Aging Neurosci, 2019, 11: 313. doi: 10.3389/fnagi.2019.00313
|
[22] |
Gleave JA, Arathoon LR, Trinh D, et al. Sirtuin 3 rescues neurons through the stabilisation of mitochondrial biogenetics in the virally-expressing mutant α-synuclein rat model of parkinsonism[J]. Neurobiol Dis, 2017, 106: 133–146. doi: 10.1016/j.nbd.2017.06.009
|
[23] |
Park JH, Burgess JD, Faroqi AH, et al. Alpha-synuclein-induced mitochondrial dysfunction is mediated via a sirtuin 3-dependent pathway[J]. Mol Neurodegener, 2020, 15(1): 5. doi: 10.1186/s13024-019-0349-x
|
[24] |
Huang D, Liu M, Jiang Y. Mitochonic acid-5 attenuates TNF-α-mediated neuronal inflammation via activating Parkin-related mitophagy and augmenting the AMPK-Sirt3 pathways[J]. J Cell Physiol, 2019, 234(12): 22172–22182. doi: 10.1002/jcp.28783
|
[25] |
Tseng AHH, Shieh SS, Wang DL. SIRT3 deacetylates FOXO3 to protect mitochondria against oxidative damage[J]. Free Radic Biol Med, 2013, 63: 222–234. doi: 10.1016/j.freeradbiomed.2013.05.002
|
[26] |
Sundaresan NR, Samant SA, Pillai VB, et al. SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70[J]. Mol Cell Biol, 2008, 28(20): 6384–6401. doi: 10.1128/MCB.00426-08
|
[27] |
Chen J, Wang A, Chen Q. SirT3 and p53 deacetylation in aging and cancer[J]. J Cell Physiol, 2017, 232(9): 2308–2311. doi: 10.1002/jcp.25669
|
[28] |
Xiong Y, Wang L, Wang S, et al. SIRT3 deacetylates and promotes degradation of P53 in PTEN-defective non-small cell lung cancer[J]. J Cancer Res Clin Oncol, 2018, 144(2): 189–198. doi: 10.1007/s00432-017-2537-9
|
[29] |
Luo K, Huang W, Tang S. Sirt3 enhances glioma cell viability by stabilizing Ku70-BAX interaction[J]. Onco Targets Ther, 2018, 11: 7559–7567. doi: 10.2147/OTT.S172672
|
[30] |
Liu H, He Z, Germič N, et al. ATG12 deficiency leads to tumor cell oncosis owing to diminished mitochondrial biogenesis and reduced cellular bioenergetics[J]. Cell Death Differ, 2020, 27(6): 1965–1980. doi: 10.1038/s41418-019-0476-5
|
[31] |
Wenz T. Regulation of mitochondrial biogenesis and PGC-1α under cellular stress[J]. Mitochondrion, 2013, 13(2): 134–142. doi: 10.1016/j.mito.2013.01.006
|
[32] |
Dorn II GW, Vega RB, Kelly DP. Mitochondrial biogenesis and dynamics in the developing and diseased heart[J]. Genes Dev, 2015, 29(19): 1981–1991. doi: 10.1101/gad.269894.115
|
[33] |
Scarpulla RC, Vega RB, Kelly DP. Transcriptional integration of mitochondrial biogenesis[J]. Trends Endocrinol Metab, 2012, 23(9): 459–466. doi: 10.1016/j.tem.2012.06.006
|
[34] |
Peng W, Cai G, Xia Y, et al. Mitochondrial dysfunction in atherosclerosis[J]. DNA Cell Biol, 2019, 38(7): 597–606. doi: 10.1089/dna.2018.4552
|
[35] |
Wang J, Toan S, Zhou H. Mitochondrial quality control in cardiac microvascular ischemia-reperfusion injury: new insights into the mechanisms and therapeutic potentials[J]. Pharmacol Res, 2020, 156: 104771. doi: 10.1016/j.phrs.2020.104771
|
[36] |
Wang J, Toan S, Zhou H. New insights into the role of mitochondria in cardiac microvascular ischemia/reperfusion injury[J]. Angiogenesis, 2020, 23(3): 299–314. doi: 10.1007/s10456-020-09720-2
|
[37] |
Scarpulla RC. Nuclear control of respiratory chain expression by nuclear respiratory factors and PGC-1-related coactivator[J]. Ann N Y Acad Sci, 2008, 1147: 321–334. doi: 10.1196/annals.1427.006
|
[38] |
Zhu J, Wang KZ, Chu CT. After the banquet: mitochondrial biogenesis, mitophagy, and cell survival[J]. Autophagy, 2013, 9(11): 1663–1676. doi: 10.4161/auto.24135
|
[39] |
López-Lluch G, Irusta PM, Navas P, et al. Mitochondrial biogenesis and healthy aging[J]. Exp Gerontol, 2008, 43(9): 813–819. doi: 10.1016/j.exger.2008.06.014
|
[40] |
Jornayvaz FR, Shulman GI. Regulation of mitochondrial biogenesis[J]. Essays Biochem, 2010, 47: 69–84. doi: 10.1042/bse0470069
|
[41] |
Yau WW, Singh BK, Lesmana R, et al. Thyroid hormone (T3) stimulates brown adipose tissue activation via mitochondrial biogenesis and MTOR-mediated mitophagy[J]. Autophagy, 2019, 15(1): 131–150. doi: 10.1080/15548627.2018.1511263
|
[42] |
Lesmana R, Sinha RA, Singh BK, et al. Thyroid hormone stimulation of autophagy is essential for mitochondrial biogenesis and activity in skeletal muscle[J]. Endocrinology, 2016, 157(1): 23–38. doi: 10.1210/en.2015-1632
|
[43] |
Sinha RA, Singh BK, Zhou J, et al. Thyroid hormone induction of mitochondrial activity is coupled to mitophagy via ROS-AMPK-ULK1 signaling[J]. Autophagy, 2015, 11(8): 1341–1357. doi: 10.1080/15548627.2015.1061849
|
[44] |
Kang C, Lim W. Data on mitochondrial function in skeletal muscle of old mice in response to different exercise intensity[J]. Data Brief, 2016, 7: 1519–1523. doi: 10.1016/j.dib.2016.04.043
|
[45] |
Holloszy JO. Biochemical adaptations in muscle. Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle[J]. J Biol Chem, 1967, 242(9): 2278–2282. doi: 10.1016/S0021-9258(18)96046-1
|
[46] |
Tristan C, Shahani N, Sedlak TW, et al. The diverse functions of GAPDH: views from different subcellular compartments[J]. Cell Signal, 2011, 23(2): 317–323. doi: 10.1016/j.cellsig.2010.08.003
|
[47] |
Grasso D, Zampieri LX, Capelôa T, et al. Mitochondria in cancer[J]. Cell Stress, 2020, 4(6): 114–146. doi: 10.15698/cst2020.06.221
|
[48] |
Morris MC, Evans DA, Tangney CC, et al. Dietary copper and high saturated and trans fat intakes associated with cognitive decline[J]. Arch Neurol, 2006, 63(8): 1085–1088. doi: 10.1001/archneur.63.8.1085
|
[49] |
Chan DC. Fusion and fission: interlinked processes critical for mitochondrial health[J]. Annu Rev Genet, 2012, 46: 265–287. doi: 10.1146/annurev-genet-110410-132529
|
[50] |
Youle RJ, van der Bliek AM. Mitochondrial fission, fusion, and stress[J]. Science, 2012, 337(6098): 1062–1065. doi: 10.1126/science.1219855
|
[51] |
Filograna R, Mennuni M, Alsina D, et al. Mitochondrial DNA copy number in human disease: the more the better?[J]. FEBS Lett, 2021, 595(8): 976–1002. doi: 10.1002/1873-3468.14021
|
[52] |
Cortes CJ, La Spada AR. The many faces of autophagy dysfunction in Huntington's disease: from mechanism to therapy[J]. Drug Discov Today, 2014, 19(7): 963–971. doi: 10.1016/j.drudis.2014.02.014
|
[53] |
Bečanović K, Asghar M, Gadawska I, et al. Age-related mitochondrial alterations in brain and skeletal muscle of the YAC128 model of Huntington disease[J]. npj Aging Mech Dis, 2021, 7(1): 26. doi: 10.1038/s41514-021-00079-2
|
[54] |
Zhu P, Hu S, Jin Q, et al. Ripk3 promotes ER stress-induced necroptosis in cardiac IR injury: a mechanism involving calcium overload/XO/ROS/mPTP pathway[J]. Redox Biol, 2018, 16: 157–168. doi: 10.1016/j.redox.2018.02.019
|
[55] |
Zhou H, Zhang Y, Hu S, et al. Melatonin protects cardiac microvasculature against ischemia/reperfusion injury via suppression of mitochondrial fission-VDAC1-HK2-mPTP-mitophagy axis[J]. J Pineal Res, 2017, 63(1): e12413. doi: 10.1111/jpi.12413
|
[56] |
Popov LD. Mitochondrial biogenesis: an update[J]. J Cell Mol Med, 2020, 24(9): 4892–4899. doi: 10.1111/jcmm.15194
|
[57] |
Kraytsberg Y, Kudryavtseva E, Mckee AC, et al. Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons[J]. Nat Genet, 2006, 38(5): 518–520. doi: 10.1038/ng1778
|
[58] |
Trifunovic A, Hansson A, Wredenberg A, et al. Somatic mtDNA mutations cause aging phenotypes without affecting reactive oxygen species production[J]. Proc Natl Acad Sci U S A, 2005, 102(50): 17993–17998. doi: 10.1073/pnas.0508886102
|
[59] |
Parkinson GM, Dayas CV, Smith DW. Increased mitochondrial DNA deletions in substantia nigra dopamine neurons of the aged rat[J]. Curr Aging Sci, 2014, 7(3): 155–160. doi: 10.2174/1874609808666150122150850
|
[60] |
Bender A, Krishnan KJ, Morris CM, et al. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease[J]. Nat Genet, 2006, 38(5): 515–517. doi: 10.1038/ng1769
|
[61] |
Coskun P, Beal M, Wallace D. Alzheimer's brains harbor somatic mtDNA control-region mutations that suppress mitochondrial transcription and replication[J]. Proc Natl Acad Sci U S A, 2004, 101(29): 10726–10731. doi: 10.1073/pnas.0403649101
|
[62] |
Banoei MM, Houshmand M, Panahi MSS, et al. Huntington's disease and mitochondrial DNA deletions: event or regular mechanism for mutant huntingtin protein and CAG repeats expansion?![J]. Cell Mol Neurobiol, 2007, 27(7): 867–875. doi: 10.1007/s10571-007-9206-5
|
[63] |
Acevedo-Torres K, Berríos L, Rosario N, et al. Mitochondrial DNA damage is a hallmark of chemically induced and the R6/2 transgenic model of Huntington's disease[J]. DNA Repair (Amst), 2009, 8(1): 126–136. doi: 10.1016/j.dnarep.2008.09.004
|
[64] |
Tan YB, Pastukh VM, Gorodnya OM, et al. Enhanced mitochondrial DNA repair resuscitates transplantable lungs donated after circulatory death[J]. J Surg Res, 2020, 245: 273–280. doi: 10.1016/j.jss.2019.07.057
|
[65] |
Laubenthal L, Hoelker M, Frahm J, et al. Mitochondrial DNA copy number and biogenesis in different tissues of early- and late-lactating dairy cows[J]. J Dairy Sci, 2016, 99(2): 1571–1583. doi: 10.3168/jds.2015-9847
|
[66] |
Nishiyama S, Shitara H, Nakada K, et al. Over-expression of Tfam improves the mitochondrial disease phenotypes in a mouse model system[J]. Biochem Biophys Res Commun, 2010, 401(1): 26–31. doi: 10.1016/j.bbrc.2010.08.143
|
[67] |
Ikeuchi M, Matsusaka H, Kang D, et al. Overexpression of mitochondrial transcription factor a ameliorates mitochondrial deficiencies and cardiac failure after myocardial infarction[J]. Circulation, 2005, 112(5): 683–690. doi: 10.1161/CIRCULATIONAHA.104.524835
|
[68] |
Ylikallio E, Tyynismaa H, Tsutsui H, et al. High mitochondrial DNA copy number has detrimental effects in mice[J]. Hum Mol Genet, 2010, 19(13): 2695–2705. doi: 10.1093/hmg/ddq163
|
[69] |
Carrico C, Meyer JG, He W, et al. The mitochondrial acylome emerges: proteomics, regulation by sirtuins, and metabolic and disease implications[J]. Cell Metab, 2018, 27(3): 497–512. doi: 10.1016/j.cmet.2018.01.016
|
[70] |
McNaught KSP, Jackson T, Jnobaptiste R, et al. Proteasomal dysfunction in sporadic Parkinson's disease[J]. Neurology, 2006, 66(10 S4): S37–S49. doi: 10.1212/wnl.66.10_suppl_4.s37
|
[71] |
Beal MF. Mitochondria take center stage in aging and neurodegeneration[J]. Ann Neurol, 2005, 58(4): 495–505. doi: 10.1002/ana.20624
|
[72] |
Manfredi G, Xu Z. Mitochondrial dysfunction and its role in motor neuron degeneration in ALS[J]. Mitochondrion, 2005, 5(2): 77–87. doi: 10.1016/j.mito.2005.01.002
|
[73] |
Genin EC, Madji Hounoum B, Bannwarth S, et al. Mitochondrial defect in muscle precedes neuromuscular junction degeneration and motor neuron death in CHCHD10S59L/+ mouse[J]. Acta Neuropathol, 2019, 138(1): 123–145. doi: 10.1007/s00401-019-01988-z
|
[74] |
Salnikova D, Orekhova V, Grechko A, et al. Mitochondrial dysfunction in vascular wall cells and its role in atherosclerosis[J]. Int J Mol Sci, 2021, 22(16): 8990. doi: 10.3390/ijms22168990
|
[75] |
Papa L, Germain D. SirT3 regulates the mitochondrial unfolded protein response[J]. Mol Cell Biol, 2014, 34(4): 699–710. doi: 10.1128/MCB.01337-13
|
[76] |
Cheng Y, Ren X, Gowda AS, et al. Interaction of Sirt3 with OGG1 contributes to repair of mitochondrial DNA and protects from apoptotic cell death under oxidative stress[J]. Cell Death Dis, 2013, 4(7): e731. doi: 10.1038/cddis.2013.254
|
[77] |
Kabziński J, Walczak A, Mik M, et al. Sirt3 regulates the level of mitochondrial DNA repair activity through deacetylation of NEIL1, NEIL2, OGG1, MUTYH, APE1 and LIG3 in colorectal cancer[J]. Pol Przegl Chir, 2019, 92(1): 1–4. doi: 10.5604/01.3001.0013.5539
|
[78] |
Yang JL, Weissman L, Bohr VA, et al. Mitochondrial DNA damage and repair in neurodegenerative disorders[J]. DNA Repair (Amst), 2008, 7(7): 1110–1120. doi: 10.1016/j.dnarep.2008.03.012
|
[79] |
LeDoux SP, Druzhyna NM, Hollensworth SB, et al. Mitochondrial DNA repair: a critical player in the response of cells of the CNS to genotoxic insults[J]. Neuroscience, 2007, 145(4): 1249–1259. doi: 10.1016/j.neuroscience.2006.10.002
|
[80] |
Weissman L, de Souza-pinto NC, Stevnsner T, et al. DNA repair, mitochondria, and neurodegeneration[J]. Neuroscience, 2007, 145(4): 1318–1329. doi: 10.1016/j.neuroscience.2006.08.061
|
[81] |
SenGupta T, Palikaras K, Esbensen YQ, et al. Base excision repair causes age-dependent accumulation of single-stranded DNA breaks that contribute to Parkinson disease pathology[J]. Cell Rep, 2021, 36(10): 109668. doi: 10.1016/j.celrep.2021.109668
|
[82] |
Wang H, Lautrup S, Caponio D, et al. DNA damage-induced neurodegeneration in accelerated ageing and Alzheimer's disease[J]. Int J Mol Sci, 2021, 22(13): 6748. doi: 10.3390/ijms22136748
|
[83] |
Keeney PM, Bennett Jr JP. ALS spinal neurons show varied and reduced mtDNA gene copy numbers and increased mtDNA gene deletions[J]. Mol Neurodegener, 2010, 5: 21. doi: 10.1186/1750-1326-5-21
|
[84] |
Song W, Song Y, Kincaid B, et al. Mutant SOD1G93A triggers mitochondrial fragmentation in spinal cord motor neurons: neuroprotection by SIRT3 and PGC-1α[J]. Neurobiol Dis, 2013, 51: 72–81. doi: 10.1016/j.nbd.2012.07.004
|
[85] |
Rius-Pérez S, Torres-Cuevas I, Millán I, et al. PGC-1α, inflammation, and oxidative stress: an integrative view in metabolism[J]. Oxid Med Cell Longev, 2020, 2020: 1452696. doi: 10.1155/2020/1452696
|
[86] |
Zhang X, Ren X, Zhang Q, et al. PGC-1α/ERRα-sirt3 pathway regulates DAergic neuronal death by directly deacetylating SOD2 and ATP synthase β[J]. Antioxid Redox Signal, 2016, 24(6): 312–328. doi: 10.1089/ars.2015.6403
|
[87] |
Lim KL, Ng XH, Grace LGY, et al. Mitochondrial dynamics and Parkinson's disease: focus on parkin[J]. Antioxid Redox Signal, 2012, 16(9): 935–949. doi: 10.1089/ars.2011.4105
|
[88] |
Valdinocci D, Simões RF, Kovarova J, et al. Intracellular and intercellular mitochondrial dynamics in Parkinson's disease[J]. Front Neurosci, 2019, 13: 930. doi: 10.3389/fnins.2019.00930
|
[89] |
Wang X, Becker K, Levine N, et al. Pathogenic alpha-synuclein aggregates preferentially bind to mitochondria and affect cellular respiration[J]. Acta Neuropathol Commun, 2019, 7(1): 41. doi: 10.1186/s40478-019-0696-4
|
[90] |
Vijayakumaran S, Pountney DL. SUMOylation, aging and autophagy in neurodegeneration[J]. NeuroToxicology, 2018, 66: 53–57. doi: 10.1016/j.neuro.2018.02.015
|
[91] |
Yi X, Guo W, Shi Q, et al. SIRT3-dependent mitochondrial dynamics remodeling contributes to oxidative stress-induced melanocyte degeneration in vitiligo[J]. Theranostics, 2019, 9(6): 1614–1633. doi: 10.7150/thno.30398
|
[92] |
Naia L, Carmo C, Campesan S, et al. Mitochondrial SIRT3 confers neuroprotection in Huntington's disease by regulation of oxidative challenges and mitochondrial dynamics[J]. Free Radic Biol Med, 2021, 163: 163–179. doi: 10.1016/j.freeradbiomed.2020.11.031
|
[93] |
Caja S, Enríquez JA. Mitochondria in endothelial cells: sensors and integrators of environmental cues[J]. Redox Biol, 2017, 12: 821–827. doi: 10.1016/j.redox.2017.04.021
|
[94] |
Oldendorf WH, Cornford ME, Brown WJ. The large apparent work capability of the blood-brain barrier: a study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat[J]. Ann Neurol, 1977, 1(5): 409–417. doi: 10.1002/ana.410010502
|
[95] |
Bugga P, Alam MJ, Kumar R, et al. Sirt3 ameliorates mitochondrial dysfunction and oxidative stress through regulating mitochondrial biogenesis and dynamics in cardiomyoblast[J]. Cell Signal, 2022, 94: 110309. doi: 10.1016/j.cellsig.2022.110309
|
[96] |
Valle I, Álvarez-Barrientos A, Arza E, et al. PGC-1α regulates the mitochondrial antioxidant defense system in vascular endothelial cells[J]. Cardiovasc Res, 2005, 66(3): 562–573. doi: 10.1016/j.cardiores.2005.01.026
|
[97] |
Leone TC, Kelly DP. Transcriptional control of cardiac fuel metabolism and mitochondrial function[J]. Cold Spring Harb Symp Quant Biol, 2011, 76: 175–182. doi: 10.1101/sqb.2011.76.011965
|
[98] |
Li J, Zhang Y, Liu Y, et al. PGC-1α plays a major role in the anti-apoptotic effect of 15-HETE in pulmonary artery endothelial cells[J]. Respir Physiol Neurobiol, 2015, 205: 84–91. doi: 10.1016/j.resp.2014.10.015
|
[99] |
Karnewar S, Vasamsetti SB, Gopoju R, et al. Mitochondria-targeted esculetin alleviates mitochondrial dysfunction by AMPK-mediated nitric oxide and SIRT3 regulation in endothelial cells: potential implications in atherosclerosis[J]. Sci Rep, 2016, 6: 24108. doi: 10.1038/srep24108
|
[100] |
Bell EL, Guarente L. The SirT3 divining rod points to oxidative stress[J]. Mol Cell, 2011, 42(5): 561–568. doi: 10.1016/j.molcel.2011.05.008
|
[101] |
Kong X, Wang R, Xue Y, et al. Sirtuin 3, a new target of PGC-1α, plays an important role in the suppression of ROS and mitochondrial biogenesis[J]. PLoS One, 2010, 5(7): e11707. doi: 10.1371/journal.pone.0011707
|
[102] |
Lugus JJ, Ngoh GA, Bachschmid MM, et al. Mitofusins are required for angiogenic function and modulate different signaling pathways in cultured endothelial cells[J]. J Mol Cell Cardiol, 2011, 51(6): 885–893. doi: 10.1016/j.yjmcc.2011.07.023
|
[103] |
Schuler MH, Hughes AL. OPA1 and angiogenesis: beyond the fusion function[J]. Cell Metab, 2020, 31(5): 886–887. doi: 10.1016/j.cmet.2020.04.014
|
[104] |
Zorzano A, Liesa M, Palacin M. Mitochondrial dynamics as a bridge between mitochondrial dysfunction and insulin resistance[J]. Arch Physiol Biochem, 2009, 115(1): 1–12. doi: 10.1080/13813450802676335
|
[105] |
Ong SB, Kalkhoran SB, Cabrera-Fuentes HA, et al. Mitochondrial fusion and fission proteins as novel therapeutic targets for treating cardiovascular disease[J]. Eur J Pharmacol, 2015, 763(Pt A): 104–114. doi: 10.1016/j.ejphar.2015.04.056
|
[106] |
Zhang J, Liu W, Liu J, et al. G-protein β2 subunit interacts with mitofusin 1 to regulate mitochondrial fusion[J]. Nat Commun, 2010, 1: 101. doi: 10.1038/ncomms1099
|
[107] |
Kitada M, Ogura Y, Monno I, et al. Sirtuins and type 2 diabetes: role in inflammation, oxidative stress, and mitochondrial function[J]. Front Endocrinol (Lausanne), 2019, 10: 187. doi: 10.3389/fendo.2019.00187
|
[108] |
Kendrick AA, Choudhury M, Rahman SM, et al. Fatty liver is associated with reduced SIRT3 activity and mitochondrial protein hyperacetylation[J]. Biochem J, 2011, 433(3): 505–514. doi: 10.1042/BJ20100791
|
[109] |
Yang L, Zhang J, Xing W, et al. SIRT3 deficiency induces endothelial insulin resistance and blunts endothelial-dependent vasorelaxation in mice and human with obesity[J]. Sci Rep, 2016, 6: 23366. doi: 10.1038/srep23366
|
[110] |
Kim M, Lee JS, Oh JE, et al. SIRT3 overexpression attenuates palmitate-induced pancreatic β-cell dysfunction[J]. PLoS One, 2015, 10(4): e0124744. doi: 10.1371/journal.pone.0124744
|
[111] |
Elizabeth MPM, Alarcon-Aguilar FJ, Clara OC, et al. Pancreatic β-cells and type 2 diabetes development[J]. Curr Diabetes Rev, 2017, 13(2): 108–121. doi: 10.2174/1573399812666151020101222
|
[112] |
Eizirik DL, Pasquali L, Cnop M. Pancreatic β-cells in type 1 and type 2 diabetes mellitus: different pathways to failure[J]. Nat Rev Endocrinol, 2020, 16(7): 349–362. doi: 10.1038/s41574-020-0355-7
|
[113] |
Wang W, Wang Y, Long J, et al. Mitochondrial fission triggered by hyperglycemia is mediated by ROCK1 activation in podocytes and endothelial cells[J]. Cell Metab, 2012, 15(2): 186–200. doi: 10.1016/j.cmet.2012.01.009
|
[114] |
Rato L, Duarte AI, Tomás GD, et al. Pre-diabetes alters testicular PGC1-α/SIRT3 axis modulating mitochondrial bioenergetics and oxidative stress[J]. Biochim Biophys Acta, 2014, 1837(3): 335–344. doi: 10.1016/j.bbabio.2013.12.008
|
[115] |
Sebastián D, Hernández-Alvarez MI, Segalés J, et al. Mitofusin 2 (Mfn2) links mitochondrial and endoplasmic reticulum function with insulin signaling and is essential for normal glucose homeostasis[J]. Proc Natl Acad Sci U S A, 2012, 109(14): 5523–5528. doi: 10.1073/pnas.1108220109
|
[116] |
Sebastián D, Sorianello E, Segalés J, et al. Mfn2 deficiency links age-related sarcopenia and impaired autophagy to activation of an adaptive mitophagy pathway[J]. EMBO J, 2016, 35(15): 1677–1693. doi: 10.15252/embj.201593084
|
[117] |
Jheng HF, Tsai PJ, Guo SM, et al. Mitochondrial fission contributes to mitochondrial dysfunction and insulin resistance in skeletal muscle[J]. Mol Cell Biol, 2012, 32(2): 309–319. doi: 10.1128/MCB.05603-11
|
[118] |
Lin HY, Weng S, Chang YH, et al. The causal role of mitochondrial dynamics in regulating insulin resistance in diabetes: link through mitochondrial reactive oxygen species[J]. Oxid Med Cell Longev, 2018, 2018: 7514383. doi: 10.1155/2018/7514383
|