Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Volume 37 Issue 2
Mar.  2023
Turn off MathJax
Article Contents
Hongyan Li, Zhiyou Cai. SIRT3 regulates mitochondrial biogenesis in aging-related diseases[J]. The Journal of Biomedical Research, 2023, 37(2): 77-88. doi: 10.7555/JBR.36.20220078
Citation: Hongyan Li, Zhiyou Cai. SIRT3 regulates mitochondrial biogenesis in aging-related diseases[J]. The Journal of Biomedical Research, 2023, 37(2): 77-88. doi: 10.7555/JBR.36.20220078

SIRT3 regulates mitochondrial biogenesis in aging-related diseases

doi: 10.7555/JBR.36.20220078
More Information
  • Corresponding author: Zhiyou Cai, Southwest Medical University, Luzhou, Sichuan 646000, China; Department of Neurology, Chongqing General Hospital, No. 312 Zhongshan First Road, Yuzhong District, Chongqing 400013, China. Tel/Fax: +86-23-63515796, E-mail: caizhiyou@ucas.ac.cn
  • Received: 2022-04-10
  • Revised: 2022-05-26
  • Accepted: 2022-06-01
  • Published: 2022-06-28
  • Issue Date: 2023-03-28
  • Sirtuin 3 (SIRT3), the main family member of mitochondrial deacetylase, targets the majority of substrates controlling mitochondrial biogenesis via lysine deacetylation and modulates important cellular functions such as energy metabolism, reactive oxygen species production and clearance, oxidative stress, and aging. Deletion of SIRT3 has a deleterious effect on mitochondrial biogenesis, thus leading to the defect in mitochondrial function and insufficient ATP production. Imbalance of mitochondrial dynamics leads to excessive mitochondrial biogenesis, dampening mitochondrial function. Mitochondrial dysfunction plays an important role in several diseases related to aging, such as cardiovascular disease, cancer and neurodegenerative diseases. Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) launches mitochondrial biogenesis through activating nuclear respiratory factors. These factors act on genes, transcribing and translating mitochondrial DNA to generate new mitochondria. PGC1α builds a bridge between SIRT3 and mitochondrial biogenesis. This review described the involvement of SIRT3 and mitochondrial dynamics, particularly mitochondrial biogenesis in aging-related diseases, and further illustrated the role of the signaling events between SIRT3 and mitochondrial biogenesis in the pathological process of aging-related diseases.


  • CLC number: R592, Document code: A
    The authors reported no conflict of interests.
  • loading
  • [1]
    Ferrucci L, Giallauria F, Guralnik JM. Epidemiology of aging[J]. Radiol Clin North Am, 2008, 46(4): 643–652. doi: 10.1016/j.rcl.2008.07.005
    Jaul E, Barron J. Age-related diseases and clinical and public health implications for the 85 years old and over population[J]. Front Public Health, 2017, 5: 335. doi: 10.3389/fpubh.2017.00335
    Li Z, Zhang Z, Ren Y, et al. Aging and age-related diseases: from mechanisms to therapeutic strategies[J]. Biogerontology, 2021, 22(2): 165–187. doi: 10.1007/s10522-021-09910-5
    Jang J, Blum A, Liu J, et al. The role of mitochondria in aging[J]. J Clin Invest, 2018, 128(9): 3662–3670. doi: 10.1172/JCI120842
    Huang W, Huang Y, Huang R, et al. SIRT3 expression decreases with reactive oxygen species generation in rat cortical neurons during early brain injury induced by experimental subarachnoid hemorrhage[J]. Biomed Res Int, 2016, 2016: 8263926. doi: 10.1155/2016/8263926
    Frye RA. Characterization of five human cDNAs with homology to the yeast SIR2 gene: sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity[J]. Biochem Biophys Res Commun, 1999, 260(1): 273–279. doi: 10.1006/bbrc.1999.0897
    Almeida M, Porter RM. Sirtuins and FoxOs in osteoporosis and osteoarthritis[J]. Bone, 2019, 121: 284–292. doi: 10.1016/j.bone.2019.01.018
    Jeong SM, Haigis MC. Sirtuins in cancer: a balancing act between genome stability and metabolism[J]. Mol Cells, 2015, 38(9): 750–758. doi: 10.14348/molcells.2015.0167
    Bause AS, Haigis MC. SIRT3 regulation of mitochondrial oxidative stress[J]. Exp Gerontol, 2013, 48(7): 634–639. doi: 10.1016/j.exger.2012.08.007
    Lombard DB, Alt FW, Cheng HL, et al. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation[J]. Mol Cell Biol, 2007, 27(24): 8807–8814. doi: 10.1128/MCB.01636-07
    Fu X, Li K, Niu Y, et al. The mTOR/PGC-1α/SIRT3 pathway drives reductive glutamine metabolism to reduce oxidative stress caused by ISKNV in CPB cells[J]. Microbiol Spectr, 2022, 10(1): e0231021. doi: 10.1128/spectrum.02310-21
    Wu J, Zeng Z, Zhang W, et al. Emerging role of SIRT3 in mitochondrial dysfunction and cardiovascular diseases[J]. Free Radic Res, 2019, 53(2): 139–149. doi: 10.1080/10715762.2018.1549732
    Chen T, Liu J, Li N, et al. Mouse SIRT3 attenuates hypertrophy-related lipid accumulation in the heart through the deacetylation of LCAD[J]. PLoS One, 2015, 10(3): e0118909. doi: 10.1371/journal.pone.0118909
    Liu J, Li D, Zhang T, et al. SIRT3 protects hepatocytes from oxidative injury by enhancing ROS scavenging and mitochondrial integrity[J]. Cell Death Dis, 2017, 8(10): e3158. doi: 10.1038/cddis.2017.564
    Xin T, Lu C. SirT3 activates AMPK-related mitochondrial biogenesis and ameliorates sepsis-induced myocardial injury[J]. Aging, 2020, 12(16): 16224–16237. doi: 10.18632/aging.103644
    Bellizzi D, Rose G, Cavalcante P, et al. A novel VNTR enhancer within the SIRT3 gene, a human homologue of SIR2, is associated with survival at oldest ages[J]. Genomics, 2005, 85(2): 258–263. doi: 10.1016/j.ygeno.2004.11.003
    Kincaid B, Bossy-Wetzel E. Forever young: SIRT3 a shield against mitochondrial meltdown, aging, and neurodegeneration[J]. Front Aging Neurosci, 2013, 5: 48. doi: 10.3389/fnagi.2013.00048
    Rose G, Dato S, Altomare K, et al. Variability of the SIRT3 gene, human silent information regulator Sir2 homologue, and survivorship in the elderly[J]. Exp Gerontol, 2003, 38(10): 1065–1070. doi: 10.1016/S0531-5565(03)00209-2
    Hirschey MD, Shimazu T, Jing E, et al. SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome[J]. Mol Cell, 2011, 44(2): 177–190. doi: 10.1016/j.molcel.2011.07.019
    McDonnell E, Peterson BS, Bomze HM, et al. SIRT3 regulates progression and development of diseases of aging[J]. Trends Endocrinol Metab, 2015, 26(9): 486–492. doi: 10.1016/j.tem.2015.06.001
    Meng H, Yan W, Lei Y, et al. SIRT3 regulation of mitochondrial quality control in neurodegenerative diseases[J]. Front Aging Neurosci, 2019, 11: 313. doi: 10.3389/fnagi.2019.00313
    Gleave JA, Arathoon LR, Trinh D, et al. Sirtuin 3 rescues neurons through the stabilisation of mitochondrial biogenetics in the virally-expressing mutant α-synuclein rat model of parkinsonism[J]. Neurobiol Dis, 2017, 106: 133–146. doi: 10.1016/j.nbd.2017.06.009
    Park JH, Burgess JD, Faroqi AH, et al. Alpha-synuclein-induced mitochondrial dysfunction is mediated via a sirtuin 3-dependent pathway[J]. Mol Neurodegener, 2020, 15(1): 5. doi: 10.1186/s13024-019-0349-x
    Huang D, Liu M, Jiang Y. Mitochonic acid-5 attenuates TNF-α-mediated neuronal inflammation via activating Parkin-related mitophagy and augmenting the AMPK-Sirt3 pathways[J]. J Cell Physiol, 2019, 234(12): 22172–22182. doi: 10.1002/jcp.28783
    Tseng AHH, Shieh SS, Wang DL. SIRT3 deacetylates FOXO3 to protect mitochondria against oxidative damage[J]. Free Radic Biol Med, 2013, 63: 222–234. doi: 10.1016/j.freeradbiomed.2013.05.002
    Sundaresan NR, Samant SA, Pillai VB, et al. SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70[J]. Mol Cell Biol, 2008, 28(20): 6384–6401. doi: 10.1128/MCB.00426-08
    Chen J, Wang A, Chen Q. SirT3 and p53 deacetylation in aging and cancer[J]. J Cell Physiol, 2017, 232(9): 2308–2311. doi: 10.1002/jcp.25669
    Xiong Y, Wang L, Wang S, et al. SIRT3 deacetylates and promotes degradation of P53 in PTEN-defective non-small cell lung cancer[J]. J Cancer Res Clin Oncol, 2018, 144(2): 189–198. doi: 10.1007/s00432-017-2537-9
    Luo K, Huang W, Tang S. Sirt3 enhances glioma cell viability by stabilizing Ku70-BAX interaction[J]. Onco Targets Ther, 2018, 11: 7559–7567. doi: 10.2147/OTT.S172672
    Liu H, He Z, Germič N, et al. ATG12 deficiency leads to tumor cell oncosis owing to diminished mitochondrial biogenesis and reduced cellular bioenergetics[J]. Cell Death Differ, 2020, 27(6): 1965–1980. doi: 10.1038/s41418-019-0476-5
    Wenz T. Regulation of mitochondrial biogenesis and PGC-1α under cellular stress[J]. Mitochondrion, 2013, 13(2): 134–142. doi: 10.1016/j.mito.2013.01.006
    Dorn II GW, Vega RB, Kelly DP. Mitochondrial biogenesis and dynamics in the developing and diseased heart[J]. Genes Dev, 2015, 29(19): 1981–1991. doi: 10.1101/gad.269894.115
    Scarpulla RC, Vega RB, Kelly DP. Transcriptional integration of mitochondrial biogenesis[J]. Trends Endocrinol Metab, 2012, 23(9): 459–466. doi: 10.1016/j.tem.2012.06.006
    Peng W, Cai G, Xia Y, et al. Mitochondrial dysfunction in atherosclerosis[J]. DNA Cell Biol, 2019, 38(7): 597–606. doi: 10.1089/dna.2018.4552
    Wang J, Toan S, Zhou H. Mitochondrial quality control in cardiac microvascular ischemia-reperfusion injury: new insights into the mechanisms and therapeutic potentials[J]. Pharmacol Res, 2020, 156: 104771. doi: 10.1016/j.phrs.2020.104771
    Wang J, Toan S, Zhou H. New insights into the role of mitochondria in cardiac microvascular ischemia/reperfusion injury[J]. Angiogenesis, 2020, 23(3): 299–314. doi: 10.1007/s10456-020-09720-2
    Scarpulla RC. Nuclear control of respiratory chain expression by nuclear respiratory factors and PGC-1-related coactivator[J]. Ann N Y Acad Sci, 2008, 1147: 321–334. doi: 10.1196/annals.1427.006
    Zhu J, Wang KZ, Chu CT. After the banquet: mitochondrial biogenesis, mitophagy, and cell survival[J]. Autophagy, 2013, 9(11): 1663–1676. doi: 10.4161/auto.24135
    López-Lluch G, Irusta PM, Navas P, et al. Mitochondrial biogenesis and healthy aging[J]. Exp Gerontol, 2008, 43(9): 813–819. doi: 10.1016/j.exger.2008.06.014
    Jornayvaz FR, Shulman GI. Regulation of mitochondrial biogenesis[J]. Essays Biochem, 2010, 47: 69–84. doi: 10.1042/bse0470069
    Yau WW, Singh BK, Lesmana R, et al. Thyroid hormone (T3) stimulates brown adipose tissue activation via mitochondrial biogenesis and MTOR-mediated mitophagy[J]. Autophagy, 2019, 15(1): 131–150. doi: 10.1080/15548627.2018.1511263
    Lesmana R, Sinha RA, Singh BK, et al. Thyroid hormone stimulation of autophagy is essential for mitochondrial biogenesis and activity in skeletal muscle[J]. Endocrinology, 2016, 157(1): 23–38. doi: 10.1210/en.2015-1632
    Sinha RA, Singh BK, Zhou J, et al. Thyroid hormone induction of mitochondrial activity is coupled to mitophagy via ROS-AMPK-ULK1 signaling[J]. Autophagy, 2015, 11(8): 1341–1357. doi: 10.1080/15548627.2015.1061849
    Kang C, Lim W. Data on mitochondrial function in skeletal muscle of old mice in response to different exercise intensity[J]. Data Brief, 2016, 7: 1519–1523. doi: 10.1016/j.dib.2016.04.043
    Holloszy JO. Biochemical adaptations in muscle. Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle[J]. J Biol Chem, 1967, 242(9): 2278–2282. doi: 10.1016/S0021-9258(18)96046-1
    Tristan C, Shahani N, Sedlak TW, et al. The diverse functions of GAPDH: views from different subcellular compartments[J]. Cell Signal, 2011, 23(2): 317–323. doi: 10.1016/j.cellsig.2010.08.003
    Grasso D, Zampieri LX, Capelôa T, et al. Mitochondria in cancer[J]. Cell Stress, 2020, 4(6): 114–146. doi: 10.15698/cst2020.06.221
    Morris MC, Evans DA, Tangney CC, et al. Dietary copper and high saturated and trans fat intakes associated with cognitive decline[J]. Arch Neurol, 2006, 63(8): 1085–1088. doi: 10.1001/archneur.63.8.1085
    Chan DC. Fusion and fission: interlinked processes critical for mitochondrial health[J]. Annu Rev Genet, 2012, 46: 265–287. doi: 10.1146/annurev-genet-110410-132529
    Youle RJ, van der Bliek AM. Mitochondrial fission, fusion, and stress[J]. Science, 2012, 337(6098): 1062–1065. doi: 10.1126/science.1219855
    Filograna R, Mennuni M, Alsina D, et al. Mitochondrial DNA copy number in human disease: the more the better?[J]. FEBS Lett, 2021, 595(8): 976–1002. doi: 10.1002/1873-3468.14021
    Cortes CJ, La Spada AR. The many faces of autophagy dysfunction in Huntington's disease: from mechanism to therapy[J]. Drug Discov Today, 2014, 19(7): 963–971. doi: 10.1016/j.drudis.2014.02.014
    Bečanović K, Asghar M, Gadawska I, et al. Age-related mitochondrial alterations in brain and skeletal muscle of the YAC128 model of Huntington disease[J]. npj Aging Mech Dis, 2021, 7(1): 26. doi: 10.1038/s41514-021-00079-2
    Zhu P, Hu S, Jin Q, et al. Ripk3 promotes ER stress-induced necroptosis in cardiac IR injury: a mechanism involving calcium overload/XO/ROS/mPTP pathway[J]. Redox Biol, 2018, 16: 157–168. doi: 10.1016/j.redox.2018.02.019
    Zhou H, Zhang Y, Hu S, et al. Melatonin protects cardiac microvasculature against ischemia/reperfusion injury via suppression of mitochondrial fission-VDAC1-HK2-mPTP-mitophagy axis[J]. J Pineal Res, 2017, 63(1): e12413. doi: 10.1111/jpi.12413
    Popov LD. Mitochondrial biogenesis: an update[J]. J Cell Mol Med, 2020, 24(9): 4892–4899. doi: 10.1111/jcmm.15194
    Kraytsberg Y, Kudryavtseva E, Mckee AC, et al. Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons[J]. Nat Genet, 2006, 38(5): 518–520. doi: 10.1038/ng1778
    Trifunovic A, Hansson A, Wredenberg A, et al. Somatic mtDNA mutations cause aging phenotypes without affecting reactive oxygen species production[J]. Proc Natl Acad Sci U S A, 2005, 102(50): 17993–17998. doi: 10.1073/pnas.0508886102
    Parkinson GM, Dayas CV, Smith DW. Increased mitochondrial DNA deletions in substantia nigra dopamine neurons of the aged rat[J]. Curr Aging Sci, 2014, 7(3): 155–160. doi: 10.2174/1874609808666150122150850
    Bender A, Krishnan KJ, Morris CM, et al. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease[J]. Nat Genet, 2006, 38(5): 515–517. doi: 10.1038/ng1769
    Coskun P, Beal M, Wallace D. Alzheimer's brains harbor somatic mtDNA control-region mutations that suppress mitochondrial transcription and replication[J]. Proc Natl Acad Sci U S A, 2004, 101(29): 10726–10731. doi: 10.1073/pnas.0403649101
    Banoei MM, Houshmand M, Panahi MSS, et al. Huntington's disease and mitochondrial DNA deletions: event or regular mechanism for mutant huntingtin protein and CAG repeats expansion?![J]. Cell Mol Neurobiol, 2007, 27(7): 867–875. doi: 10.1007/s10571-007-9206-5
    Acevedo-Torres K, Berríos L, Rosario N, et al. Mitochondrial DNA damage is a hallmark of chemically induced and the R6/2 transgenic model of Huntington's disease[J]. DNA Repair (Amst), 2009, 8(1): 126–136. doi: 10.1016/j.dnarep.2008.09.004
    Tan YB, Pastukh VM, Gorodnya OM, et al. Enhanced mitochondrial DNA repair resuscitates transplantable lungs donated after circulatory death[J]. J Surg Res, 2020, 245: 273–280. doi: 10.1016/j.jss.2019.07.057
    Laubenthal L, Hoelker M, Frahm J, et al. Mitochondrial DNA copy number and biogenesis in different tissues of early- and late-lactating dairy cows[J]. J Dairy Sci, 2016, 99(2): 1571–1583. doi: 10.3168/jds.2015-9847
    Nishiyama S, Shitara H, Nakada K, et al. Over-expression of Tfam improves the mitochondrial disease phenotypes in a mouse model system[J]. Biochem Biophys Res Commun, 2010, 401(1): 26–31. doi: 10.1016/j.bbrc.2010.08.143
    Ikeuchi M, Matsusaka H, Kang D, et al. Overexpression of mitochondrial transcription factor a ameliorates mitochondrial deficiencies and cardiac failure after myocardial infarction[J]. Circulation, 2005, 112(5): 683–690. doi: 10.1161/CIRCULATIONAHA.104.524835
    Ylikallio E, Tyynismaa H, Tsutsui H, et al. High mitochondrial DNA copy number has detrimental effects in mice[J]. Hum Mol Genet, 2010, 19(13): 2695–2705. doi: 10.1093/hmg/ddq163
    Carrico C, Meyer JG, He W, et al. The mitochondrial acylome emerges: proteomics, regulation by sirtuins, and metabolic and disease implications[J]. Cell Metab, 2018, 27(3): 497–512. doi: 10.1016/j.cmet.2018.01.016
    McNaught KSP, Jackson T, Jnobaptiste R, et al. Proteasomal dysfunction in sporadic Parkinson's disease[J]. Neurology, 2006, 66(10 S4): S37–S49. doi: 10.1212/wnl.66.10_suppl_4.s37
    Beal MF. Mitochondria take center stage in aging and neurodegeneration[J]. Ann Neurol, 2005, 58(4): 495–505. doi: 10.1002/ana.20624
    Manfredi G, Xu Z. Mitochondrial dysfunction and its role in motor neuron degeneration in ALS[J]. Mitochondrion, 2005, 5(2): 77–87. doi: 10.1016/j.mito.2005.01.002
    Genin EC, Madji Hounoum B, Bannwarth S, et al. Mitochondrial defect in muscle precedes neuromuscular junction degeneration and motor neuron death in CHCHD10S59L/+ mouse[J]. Acta Neuropathol, 2019, 138(1): 123–145. doi: 10.1007/s00401-019-01988-z
    Salnikova D, Orekhova V, Grechko A, et al. Mitochondrial dysfunction in vascular wall cells and its role in atherosclerosis[J]. Int J Mol Sci, 2021, 22(16): 8990. doi: 10.3390/ijms22168990
    Papa L, Germain D. SirT3 regulates the mitochondrial unfolded protein response[J]. Mol Cell Biol, 2014, 34(4): 699–710. doi: 10.1128/MCB.01337-13
    Cheng Y, Ren X, Gowda AS, et al. Interaction of Sirt3 with OGG1 contributes to repair of mitochondrial DNA and protects from apoptotic cell death under oxidative stress[J]. Cell Death Dis, 2013, 4(7): e731. doi: 10.1038/cddis.2013.254
    Kabziński J, Walczak A, Mik M, et al. Sirt3 regulates the level of mitochondrial DNA repair activity through deacetylation of NEIL1, NEIL2, OGG1, MUTYH, APE1 and LIG3 in colorectal cancer[J]. Pol Przegl Chir, 2019, 92(1): 1–4. doi: 10.5604/01.3001.0013.5539
    Yang JL, Weissman L, Bohr VA, et al. Mitochondrial DNA damage and repair in neurodegenerative disorders[J]. DNA Repair (Amst), 2008, 7(7): 1110–1120. doi: 10.1016/j.dnarep.2008.03.012
    LeDoux SP, Druzhyna NM, Hollensworth SB, et al. Mitochondrial DNA repair: a critical player in the response of cells of the CNS to genotoxic insults[J]. Neuroscience, 2007, 145(4): 1249–1259. doi: 10.1016/j.neuroscience.2006.10.002
    Weissman L, de Souza-pinto NC, Stevnsner T, et al. DNA repair, mitochondria, and neurodegeneration[J]. Neuroscience, 2007, 145(4): 1318–1329. doi: 10.1016/j.neuroscience.2006.08.061
    SenGupta T, Palikaras K, Esbensen YQ, et al. Base excision repair causes age-dependent accumulation of single-stranded DNA breaks that contribute to Parkinson disease pathology[J]. Cell Rep, 2021, 36(10): 109668. doi: 10.1016/j.celrep.2021.109668
    Wang H, Lautrup S, Caponio D, et al. DNA damage-induced neurodegeneration in accelerated ageing and Alzheimer's disease[J]. Int J Mol Sci, 2021, 22(13): 6748. doi: 10.3390/ijms22136748
    Keeney PM, Bennett Jr JP. ALS spinal neurons show varied and reduced mtDNA gene copy numbers and increased mtDNA gene deletions[J]. Mol Neurodegener, 2010, 5: 21. doi: 10.1186/1750-1326-5-21
    Song W, Song Y, Kincaid B, et al. Mutant SOD1G93A triggers mitochondrial fragmentation in spinal cord motor neurons: neuroprotection by SIRT3 and PGC-1α[J]. Neurobiol Dis, 2013, 51: 72–81. doi: 10.1016/j.nbd.2012.07.004
    Rius-Pérez S, Torres-Cuevas I, Millán I, et al. PGC-1α, inflammation, and oxidative stress: an integrative view in metabolism[J]. Oxid Med Cell Longev, 2020, 2020: 1452696. doi: 10.1155/2020/1452696
    Zhang X, Ren X, Zhang Q, et al. PGC-1α/ERRα-sirt3 pathway regulates DAergic neuronal death by directly deacetylating SOD2 and ATP synthase β[J]. Antioxid Redox Signal, 2016, 24(6): 312–328. doi: 10.1089/ars.2015.6403
    Lim KL, Ng XH, Grace LGY, et al. Mitochondrial dynamics and Parkinson's disease: focus on parkin[J]. Antioxid Redox Signal, 2012, 16(9): 935–949. doi: 10.1089/ars.2011.4105
    Valdinocci D, Simões RF, Kovarova J, et al. Intracellular and intercellular mitochondrial dynamics in Parkinson's disease[J]. Front Neurosci, 2019, 13: 930. doi: 10.3389/fnins.2019.00930
    Wang X, Becker K, Levine N, et al. Pathogenic alpha-synuclein aggregates preferentially bind to mitochondria and affect cellular respiration[J]. Acta Neuropathol Commun, 2019, 7(1): 41. doi: 10.1186/s40478-019-0696-4
    Vijayakumaran S, Pountney DL. SUMOylation, aging and autophagy in neurodegeneration[J]. NeuroToxicology, 2018, 66: 53–57. doi: 10.1016/j.neuro.2018.02.015
    Yi X, Guo W, Shi Q, et al. SIRT3-dependent mitochondrial dynamics remodeling contributes to oxidative stress-induced melanocyte degeneration in vitiligo[J]. Theranostics, 2019, 9(6): 1614–1633. doi: 10.7150/thno.30398
    Naia L, Carmo C, Campesan S, et al. Mitochondrial SIRT3 confers neuroprotection in Huntington's disease by regulation of oxidative challenges and mitochondrial dynamics[J]. Free Radic Biol Med, 2021, 163: 163–179. doi: 10.1016/j.freeradbiomed.2020.11.031
    Caja S, Enríquez JA. Mitochondria in endothelial cells: sensors and integrators of environmental cues[J]. Redox Biol, 2017, 12: 821–827. doi: 10.1016/j.redox.2017.04.021
    Oldendorf WH, Cornford ME, Brown WJ. The large apparent work capability of the blood-brain barrier: a study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat[J]. Ann Neurol, 1977, 1(5): 409–417. doi: 10.1002/ana.410010502
    Bugga P, Alam MJ, Kumar R, et al. Sirt3 ameliorates mitochondrial dysfunction and oxidative stress through regulating mitochondrial biogenesis and dynamics in cardiomyoblast[J]. Cell Signal, 2022, 94: 110309. doi: 10.1016/j.cellsig.2022.110309
    Valle I, Álvarez-Barrientos A, Arza E, et al. PGC-1α regulates the mitochondrial antioxidant defense system in vascular endothelial cells[J]. Cardiovasc Res, 2005, 66(3): 562–573. doi: 10.1016/j.cardiores.2005.01.026
    Leone TC, Kelly DP. Transcriptional control of cardiac fuel metabolism and mitochondrial function[J]. Cold Spring Harb Symp Quant Biol, 2011, 76: 175–182. doi: 10.1101/sqb.2011.76.011965
    Li J, Zhang Y, Liu Y, et al. PGC-1α plays a major role in the anti-apoptotic effect of 15-HETE in pulmonary artery endothelial cells[J]. Respir Physiol Neurobiol, 2015, 205: 84–91. doi: 10.1016/j.resp.2014.10.015
    Karnewar S, Vasamsetti SB, Gopoju R, et al. Mitochondria-targeted esculetin alleviates mitochondrial dysfunction by AMPK-mediated nitric oxide and SIRT3 regulation in endothelial cells: potential implications in atherosclerosis[J]. Sci Rep, 2016, 6: 24108. doi: 10.1038/srep24108
    Bell EL, Guarente L. The SirT3 divining rod points to oxidative stress[J]. Mol Cell, 2011, 42(5): 561–568. doi: 10.1016/j.molcel.2011.05.008
    Kong X, Wang R, Xue Y, et al. Sirtuin 3, a new target of PGC-1α, plays an important role in the suppression of ROS and mitochondrial biogenesis[J]. PLoS One, 2010, 5(7): e11707. doi: 10.1371/journal.pone.0011707
    Lugus JJ, Ngoh GA, Bachschmid MM, et al. Mitofusins are required for angiogenic function and modulate different signaling pathways in cultured endothelial cells[J]. J Mol Cell Cardiol, 2011, 51(6): 885–893. doi: 10.1016/j.yjmcc.2011.07.023
    Schuler MH, Hughes AL. OPA1 and angiogenesis: beyond the fusion function[J]. Cell Metab, 2020, 31(5): 886–887. doi: 10.1016/j.cmet.2020.04.014
    Zorzano A, Liesa M, Palacin M. Mitochondrial dynamics as a bridge between mitochondrial dysfunction and insulin resistance[J]. Arch Physiol Biochem, 2009, 115(1): 1–12. doi: 10.1080/13813450802676335
    Ong SB, Kalkhoran SB, Cabrera-Fuentes HA, et al. Mitochondrial fusion and fission proteins as novel therapeutic targets for treating cardiovascular disease[J]. Eur J Pharmacol, 2015, 763(Pt A): 104–114. doi: 10.1016/j.ejphar.2015.04.056
    Zhang J, Liu W, Liu J, et al. G-protein β2 subunit interacts with mitofusin 1 to regulate mitochondrial fusion[J]. Nat Commun, 2010, 1: 101. doi: 10.1038/ncomms1099
    Kitada M, Ogura Y, Monno I, et al. Sirtuins and type 2 diabetes: role in inflammation, oxidative stress, and mitochondrial function[J]. Front Endocrinol (Lausanne), 2019, 10: 187. doi: 10.3389/fendo.2019.00187
    Kendrick AA, Choudhury M, Rahman SM, et al. Fatty liver is associated with reduced SIRT3 activity and mitochondrial protein hyperacetylation[J]. Biochem J, 2011, 433(3): 505–514. doi: 10.1042/BJ20100791
    Yang L, Zhang J, Xing W, et al. SIRT3 deficiency induces endothelial insulin resistance and blunts endothelial-dependent vasorelaxation in mice and human with obesity[J]. Sci Rep, 2016, 6: 23366. doi: 10.1038/srep23366
    Kim M, Lee JS, Oh JE, et al. SIRT3 overexpression attenuates palmitate-induced pancreatic β-cell dysfunction[J]. PLoS One, 2015, 10(4): e0124744. doi: 10.1371/journal.pone.0124744
    Elizabeth MPM, Alarcon-Aguilar FJ, Clara OC, et al. Pancreatic β-cells and type 2 diabetes development[J]. Curr Diabetes Rev, 2017, 13(2): 108–121. doi: 10.2174/1573399812666151020101222
    Eizirik DL, Pasquali L, Cnop M. Pancreatic β-cells in type 1 and type 2 diabetes mellitus: different pathways to failure[J]. Nat Rev Endocrinol, 2020, 16(7): 349–362. doi: 10.1038/s41574-020-0355-7
    Wang W, Wang Y, Long J, et al. Mitochondrial fission triggered by hyperglycemia is mediated by ROCK1 activation in podocytes and endothelial cells[J]. Cell Metab, 2012, 15(2): 186–200. doi: 10.1016/j.cmet.2012.01.009
    Rato L, Duarte AI, Tomás GD, et al. Pre-diabetes alters testicular PGC1-α/SIRT3 axis modulating mitochondrial bioenergetics and oxidative stress[J]. Biochim Biophys Acta, 2014, 1837(3): 335–344. doi: 10.1016/j.bbabio.2013.12.008
    Sebastián D, Hernández-Alvarez MI, Segalés J, et al. Mitofusin 2 (Mfn2) links mitochondrial and endoplasmic reticulum function with insulin signaling and is essential for normal glucose homeostasis[J]. Proc Natl Acad Sci U S A, 2012, 109(14): 5523–5528. doi: 10.1073/pnas.1108220109
    Sebastián D, Sorianello E, Segalés J, et al. Mfn2 deficiency links age-related sarcopenia and impaired autophagy to activation of an adaptive mitophagy pathway[J]. EMBO J, 2016, 35(15): 1677–1693. doi: 10.15252/embj.201593084
    Jheng HF, Tsai PJ, Guo SM, et al. Mitochondrial fission contributes to mitochondrial dysfunction and insulin resistance in skeletal muscle[J]. Mol Cell Biol, 2012, 32(2): 309–319. doi: 10.1128/MCB.05603-11
    Lin HY, Weng S, Chang YH, et al. The causal role of mitochondrial dynamics in regulating insulin resistance in diabetes: link through mitochondrial reactive oxygen species[J]. Oxid Med Cell Longev, 2018, 2018: 7514383. doi: 10.1155/2018/7514383
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (2841) PDF downloads(196) Cited by()
    Proportional views
    Relative Articles


    DownLoad:  Full-Size Img  PowerPoint