Citation: | Xiangyu Zhang, Yingchao Hu, Bingwei Wang, Shuo Yang. Ferroptosis: Iron-mediated cell death linked to disease pathogenesis[J]. The Journal of Biomedical Research, 2024, 38(5): 413-435. DOI: 10.7555/JBR.37.20230224 |
Ferroptosis is a pattern of iron-mediated regulatory cell death characterized by oxidative damage. The molecular regulatory mechanisms are related to iron metabolism, lipid peroxidation, and glutathione metabolism. Additionally, some immunological signaling pathways, such as the cyclic GMP-AMP synthase-stimulator of the interferon gene axis, the Janus kinase-signal transducer and activator of transcription 1 axis, and the transforming growth factor beta 1-Smad3 axis, may also participate in the regulation of ferroptosis. Studies have shown that ferroptosis is significantly associated with many diseases such as cancer, neurodegenerative diseases, inflammatory diseases, and autoimmune diseases. Considering the pivotal role of ferroptosis-regulating signaling in the pathogenesis of diverse diseases, the development of ferroptosis inducers or inhibitors may have significant clinical potential for the treatment of aforementioned conditions.
None.
This work was supported by the National Key Research and Development Program of China (Grant No. 2022YFA1303900 to S.Y.), the National Natural Science Foundation of China (Grant Nos. 32270921 and 82070567 to S.Y., and 82204354 to Y.H.), the Open Project of State Key Laboratory of Reproductive Medicine of Nanjing Medical University (Grant No. SKLRM-2021B3 to S.Y.), the Talent Cultivation Project of "Organized Scientific Research" of Nanjing Medical University (Grant No. NJMURC20220014 to S.Y.), the Natural Science Foundation of Jiangsu Province (Grant No. BK20221352 to B.W.), the Jiangsu Provincial Outstanding Postdoctoral Program (Grant No. 2022ZB419 to Y.H.) and the Postdoctoral Research Funding Project of Gusu School (Grant No. GSBSHKY202104 to Y.H.), and the China Postdoctoral Science Foundation (Grant No. 2023T160329 to Y.H.).
CLC number: R329.25, Document code: A
The authors reported no conflict of interests.
[1] |
Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060–1072. doi: 10.1016/j.cell.2012.03.042
|
[2] |
Yang WS, Stockwell BR. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells[J]. Chem Biol, 2008, 15(3): 234–245. doi: 10.1016/j.chembiol.2008.02.010
|
[3] |
Lei G, Zhuang L, Gan B. Targeting ferroptosis as a vulnerability in cancer[J]. Nat Rev Cancer, 2022, 22(7): 381–396. doi: 10.1038/s41568-022-00459-0
|
[4] |
Reichert CO, de Freitas FA, Sampaio-Silva J, et al. Ferroptosis mechanisms involved in neurodegenerative diseases[J]. Int J Mol Sci, 2020, 21(22): 8765. doi: 10.3390/ijms21228765
|
[5] |
Ni L, Yuan C, Wu X. Targeting ferroptosis in acute kidney injury[J]. Cell Death Dis, 2022, 13(2): 182. doi: 10.1038/s41419-022-04628-9
|
[6] |
Tang D, Chen X, Kang R, et al. Ferroptosis: molecular mechanisms and health implications[J]. Cell Res, 2021, 31(2): 107–125. doi: 10.1038/s41422-020-00441-1
|
[7] |
Wang Y, Liu Y, Liu J, et al. NEDD4L-mediated LTF protein degradation limits ferroptosis[J]. Biochem Biophys Res Commun, 2020, 531(4): 581–587. doi: 10.1016/j.bbrc.2020.07.032
|
[8] |
Dolma S, Lessnick SL, Hahn WC, et al. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells[J]. Cancer Cell, 2003, 3(3): 285–296. doi: 10.1016/S1535-6108(03)00050-3
|
[9] |
Yang WS, Kim KJ, Gaschler MM, et al. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis[J]. Proc Natl Acad Sci U S A, 2016, 113(34): E4966–E4975. doi: 10.1073/pnas.1603244113
|
[10] |
Chen X, Kang R, Kroemer G, et al. Ferroptosis in infection, inflammation, and immunity[J]. J Exp Med, 2021, 218(6): e20210518. doi: 10.1084/jem.20210518
|
[11] |
Frank D, Vince JE. Pyroptosis versus necroptosis: similarities, differences, and crosstalk[J]. Cell Death Differ, 2019, 26(1): 99–114. doi: 10.1038/s41418-018-0212-6
|
[12] |
Bertheloot D, Latz E, Franklin BS. Necroptosis, pyroptosis and apoptosis: an intricate game of cell death[J]. Cell Mol Immunol, 2021, 18(5): 1106–1121. doi: 10.1038/s41423-020-00630-3
|
[13] |
Chen X, Comish PB, Tang D, et al. Characteristics and biomarkers of ferroptosis[J]. Front Cell Dev Biol, 2021, 9: 637162. doi: 10.3389/fcell.2021.637162
|
[14] |
Xie Y, Hou W, Song X, et al. Ferroptosis: process and function[J]. Cell Death Differ, 2016, 23(3): 369–379. doi: 10.1038/cdd.2015.158
|
[15] |
Cui S, Ghai A, Deng Y, et al. Identification of hyperoxidized PRDX3 as a ferroptosis marker reveals ferroptotic damage in chronic liver diseases[J]. Mol Cell, 2023, 83(21): 3931–3939.e5. doi: 10.1016/j.molcel.2023.09.025
|
[16] |
Friedmann Angeli JP, Schneider M, Proneth B, et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice[J]. Nat Cell Biol, 2014, 16(12): 1180–1191. doi: 10.1038/ncb3064
|
[17] |
Doll S, Freitas FP, Shah R, et al. FSP1 is a glutathione-independent ferroptosis suppressor[J]. Nature, 2019, 575(7784): 693–698. doi: 10.1038/s41586-019-1707-0
|
[18] |
Mao C, Liu X, Zhang Y, et al. DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer[J]. Nature, 2021, 593(7860): 586–590. doi: 10.1038/s41586-021-03539-7
|
[19] |
Soula M, Weber RA, Zilka O, et al. Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers[J]. Nat Chem Biol, 2020, 16(12): 1351–1360. doi: 10.1038/s41589-020-0613-y
|
[20] |
Wang Y, Wei Z, Pan K, et al. The function and mechanism of ferroptosis in cancer[J]. Apoptosis, 2020, 25(11-12): 786–798. doi: 10.1007/s10495-020-01638-w
|
[21] |
Vila IK, Chamma H, Steer A, et al. STING orchestrates the crosstalk between polyunsaturated fatty acid metabolism and inflammatory responses[J]. Cell Metab, 2022, 34(1): 125–139.e8. doi: 10.1016/j.cmet.2021.12.007
|
[22] |
Yu X, Zhu D, Luo B, et al. IFNγ enhances ferroptosis by increasing JAK-STAT pathway activation to suppress SLCA711 expression in adrenocortical carcinoma[J]. Oncol Rep, 2022, 47(5): 97. doi: 10.3892/or.2022.8308
|
[23] |
Wei T, Zhang M, Zheng X, et al. Interferon-γ induces retinal pigment epithelial cell Ferroptosis by a JAK1-2/STAT1/SLC7A11 signaling pathway in Age-related Macular Degeneration[J]. FEBS J, 2022, 289(7): 1968–1983. doi: 10.1111/febs.16272
|
[24] |
Song SH, Han D, Park K, et al. Bone morphogenetic protein-7 attenuates pancreatic damage under diabetic conditions and prevents progression to diabetic nephropathy via inhibition of ferroptosis[J]. Front Endocrinol, 2023, 14: 1172199. doi: 10.3389/fendo.2023.1172199
|
[25] |
Louandre C, Ezzoukhry Z, Godin C, et al. Iron-dependent cell death of hepatocellular carcinoma cells exposed to sorafenib[J]. Int J Cancer, 2013, 133(7): 1732–1742. doi: 10.1002/ijc.28159
|
[26] |
Lachaier E, Louandre C, Godin C, et al. Sorafenib induces ferroptosis in human cancer cell lines originating from different solid tumors[J]. Anticancer Res, 2014, 34(11): 6417–6422. https://ar.iiarjournals.org/content/34/11/6417.long
|
[27] |
Sun X, Ou Z, Chen R, et al. Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells[J]. Hepatology, 2016, 63(1): 173–184. doi: 10.1002/hep.28251
|
[28] |
Chen D, Fan Z, Rauh M, et al. ATF4 promotes angiogenesis and neuronal cell death and confers ferroptosis in a xCT-dependent manner[J]. Oncogene, 2017, 36(40): 5593–5608. doi: 10.1038/onc.2017.146
|
[29] |
Lu Y, Qin H, Jiang B, et al. KLF2 inhibits cancer cell migration and invasion by regulating ferroptosis through GPX4 in clear cell renal cell carcinoma[J]. Cancer Lett, 2021, 522: 1–13. doi: 10.1016/j.canlet.2021.09.014
|
[30] |
Duce JA, Tsatsanis A, Cater MA, et al. Iron-export ferroxidase activity of β-amyloid precursor protein is inhibited by zinc in Alzheimer's disease[J]. Cell, 2010, 142(6): 857–867. doi: 10.1016/j.cell.2010.08.014
|
[31] |
Bao W, Pang P, Zhou X, et al. Loss of ferroportin induces memory impairment by promoting ferroptosis in Alzheimer's disease[J]. Cell Death Differ, 2021, 28(5): 1548–1562. doi: 10.1038/s41418-020-00685-9
|
[32] |
Mahoney-Sánchez L, Bouchaoui H, Ayton S, et al. Ferroptosis and its potential role in the physiopathology of Parkinson's disease[J]. Prog Neurobiol, 2021, 196: 101890. doi: 10.1016/j.pneurobio.2020.101890
|
[33] |
Xu M, Tao J, Yang Y, et al. Ferroptosis involves in intestinal epithelial cell death in ulcerative colitis[J]. Cell Death Dis, 2020, 11(2): 86. doi: 10.1038/s41419-020-2299-1
|
[34] |
Xu J, Liu S, Cui Z, et al. Ferrostatin-1 alleviated TNBS induced colitis via the inhibition of ferroptosis[J]. Biochem Biophys Res Commun, 2021, 573: 48–54. doi: 10.1016/j.bbrc.2021.08.018
|
[35] |
Shou Y, Yang L, Yang Y, et al. Inhibition of keratinocyte ferroptosis suppresses psoriatic inflammation[J]. Cell Death Dis, 2021, 12(11): 1009. doi: 10.1038/s41419-021-04284-5
|
[36] |
Li P, Jiang M, Li K, et al. Glutathione peroxidase 4–regulated neutrophil ferroptosis induces systemic autoimmunity[J]. Nat Immunol, 2021, 22(9): 1107–1117. doi: 10.1038/s41590-021-00993-3
|
[37] |
Cheng Y, Song Y, Chen H, et al. Ferroptosis mediated by lipid reactive oxygen species: a possible causal link of neuroinflammation to neurological disorders[J]. Oxid Med Cell Longev, 2021, 2021: 5005136. https://www.hindawi.com/journals/omcl/2021/5005136/
|
[38] |
Kirtonia A, Sethi G, Garg M. The multifaceted role of reactive oxygen species in tumorigenesis[J]. Cell Mol Life Sci, 2020, 77(22): 4459–4483. doi: 10.1007/s00018-020-03536-5
|
[39] |
Yan B, Ai Y, Sun Q, et al. Membrane damage during ferroptosis is caused by oxidation of phospholipids catalyzed by the oxidoreductases POR and CYB5R1[J]. Mol cell, 2021, 81(2): 355–369.e10. doi: 10.1016/j.molcel.2020.11.024
|
[40] |
Zhang C, Zhang F. Iron homeostasis and tumorigenesis: molecular mechanisms and therapeutic opportunities[J]. Protein Cell, 2015, 6(2): 88–100. doi: 10.1007/s13238-014-0119-z
|
[41] |
Wang Y, Yu L, Ding J, et al. Iron metabolism in cancer[J]. Int J Mol Sci, 2018, 20(1): 95. doi: 10.3390/ijms20010095
|
[42] |
Mancias JD, Wang X, Gygi SP, et al. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy[J]. Nature, 2014, 509(7498): 105–109. doi: 10.1038/nature13148
|
[43] |
Gao M, Monian P, Pan Q, et al. Ferroptosis is an autophagic cell death process[J]. Cell Res, 2016, 26(9): 1021–1032. doi: 10.1038/cr.2016.95
|
[44] |
Hou W, Xie Y, Song X, et al. Autophagy promotes ferroptosis by degradation of ferritin[J]. Autophagy, 2016, 12(8): 1425–1428. doi: 10.1080/15548627.2016.1187366
|
[45] |
Liu Z, Lv X, Yang B, et al. Tetrachlorobenzoquinone exposure triggers ferroptosis contributing to its neurotoxicity[J]. Chemosphere, 2021, 264: 128413. doi: 10.1016/j.chemosphere.2020.128413
|
[46] |
Ingold I, Berndt C, Schmitt S, et al. Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis[J]. Cell, 2018, 172(3): 409–422.e21. doi: 10.1016/j.cell.2017.11.048
|
[47] |
Angeli JPF, Conrad M. Selenium and GPX4, a vital symbiosis[J]. Free Radical Biol Med, 2018, 127: 153–159. doi: 10.1016/j.freeradbiomed.2018.03.001
|
[48] |
Ursini F, Maiorino M. Lipid peroxidation and ferroptosis: the role of GSH and GPx4[J]. Free Radical Biol Med, 2020, 152: 175–185. doi: 10.1016/j.freeradbiomed.2020.02.027
|
[49] |
Griffith OW. Biologic and pharmacologic regulation of mammalian glutathione synthesis[J]. Free Radical Biol Med, 1999, 27(9-10): 922–935. doi: 10.1016/S0891-5849(99)00176-8
|
[50] |
Griffith OW, Mulcahy RT. The enzymes of glutathione synthesis: γ-glutamylcysteine synthetase[M]//Purich DL. Advances in Enzymology and Related Areas of Molecular Biology: Mechanism of Enzyme Action, Part A. New York: Wiley, 1999: 209–267.
|
[51] |
Hao S, Liang B, Huang Q, et al. Metabolic networks in ferroptosis[J]. Oncol Lett, 2018, 15(4): 5405–5411. doi: 10.3892/ol.2018.8066
|
[52] |
Liu L, Liu R, Liu Y, et al. Cystine-glutamate antiporter xCT as a therapeutic target for cancer[J]. Cell Biochem Funct, 2021, 39(2): 174–179. doi: 10.1002/cbf.3581
|
[53] |
Liu M, Zhu W, Pei D. System Xc−: a key regulatory target of ferroptosis in cancer[J]. Invest New Drugs, 2021, 39(4): 1123–1131. doi: 10.1007/s10637-021-01070-0
|
[54] |
Lin Z, Liu J, Long F, et al. The lipid flippase SLC47A1 blocks metabolic vulnerability to ferroptosis[J]. Nat Commun, 2022, 13(1): 7965. doi: 10.1038/s41467-022-35707-2
|
[55] |
Vasan K, Werner M, Chandel NS. Mitochondrial metabolism as a target for cancer therapy[J]. Cell Metab, 2020, 32(3): 341–352. doi: 10.1016/j.cmet.2020.06.019
|
[56] |
Mishima E, Nakamura T, Zheng J, et al. DHODH inhibitors sensitize to ferroptosis by FSP1 inhibition[J]. Nature, 2023, 619(7968): E9–E18. doi: 10.1038/s41586-023-06269-0
|
[57] |
Crabtree MJ, Tatham AL, Hale AB, et al. Critical role for tetrahydrobiopterin recycling by dihydrofolate reductase in regulation of endothelial nitric-oxide synthase coupling: relative importance of the de novo biopterin synthesis versus salvage pathways[J]. J Biol Chem, 2009, 284(41): 28128–28136. doi: 10.1074/jbc.M109.041483
|
[58] |
Kraft VAN, Bezjian CT, Pfeiffer S, et al. GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling[J]. ACS Cent Sci, 2019, 6(1): 41–53. doi: 10.1021/acscentsci.9b01063
|
[59] |
Dodson M, Castro-Portuguez R, Zhang DD. NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis[J]. Redox Biol, 2019, 23: 101107. doi: 10.1016/j.redox.2019.101107
|
[60] |
Anandhan A, Dodson M, Schmidlin CJ, et al. Breakdown of an ironclad defense system: the critical role of NRF2 in mediating ferroptosis[J]. Cell Chem Biol, 2020, 27(4): 436–447. doi: 10.1016/j.chembiol.2020.03.011
|
[61] |
Hassannia B, Wiernicki B, Ingold I, et al. Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma[J]. J Clin Invest, 2018, 128(8): 3341–3355. doi: 10.1172/JCI99032
|
[62] |
Ayala A, Muñoz MF, Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal[J]. Oxid Med Cell Longev, 2014, 2014: 360438. https://www.hindawi.com/journals/omcl/2014/360438/
|
[63] |
Lee JY, Nam M, Son HY, et al. Polyunsaturated fatty acid biosynthesis pathway determines ferroptosis sensitivity in gastric cancer[J]. Proc Natl Acad Sci U S A, 2020, 117(51): 32433–32442. doi: 10.1073/pnas.2006828117
|
[64] |
Yamane D, Hayashi Y, Matsumoto M, et al. FADS2-dependent fatty acid desaturation dictates cellular sensitivity to ferroptosis and permissiveness for hepatitis C virus replication[J]. Cell Chem Biol, 2022, 29(5): 799–810.e4. doi: 10.1016/j.chembiol.2021.07.022
|
[65] |
Nassar ZD, Mah CY, Dehairs J, et al. Human DECR1 is an androgen-repressed survival factor that regulates PUFA oxidation to protect prostate tumor cells from ferroptosis[J]. Elife, 2020, 9: e54166. doi: 10.7554/eLife.54166
|
[66] |
Magtanong L, Ko PJ, To M, et al. Exogenous monounsaturated fatty acids promote a ferroptosis-resistant cell state[J]. Cell Chem Biol, 2019, 26(3): 420–432.e9. doi: 10.1016/j.chembiol.2018.11.016
|
[67] |
Liang D, Feng Y, Zandkarimi F, et al. Ferroptosis surveillance independent of GPX4 and differentially regulated by sex hormones[J]. Cell, 2023, 186(13): 2748–2764.e22. doi: 10.1016/j.cell.2023.05.003
|
[68] |
Küch EM, Vellaramkalayil R, Zhang I, et al. Differentially localized acyl-CoA synthetase 4 isoenzymes mediate the metabolic channeling of fatty acids towards phosphatidylinositol[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2014, 1841(2): 227–239. doi: 10.1016/j.bbalip.2013.10.018
|
[69] |
Doll S, Proneth B, Tyurina YY, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition[J]. Nat Chem Biol, 2017, 13(1): 91–98. doi: 10.1038/nchembio.2239
|
[70] |
Kagan VE, Mao G, Qu F, et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis[J]. Nat Chem Biol, 2017, 13(1): 81–90. doi: 10.1038/nchembio.2238
|
[71] |
Zhang H, Hu B, Li Z, et al. PKCβII phosphorylates ACSL4 to amplify lipid peroxidation to induce ferroptosis[J]. Nat cell Biol, 2022, 24(1): 88–98. doi: 10.1038/s41556-021-00818-3
|
[72] |
Conrad M, Pratt DA. The chemical basis of ferroptosis[J]. Nat Chem Biol, 2019, 15(12): 1137–1147. doi: 10.1038/s41589-019-0408-1
|
[73] |
Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease[J]. Nat Rev Mol Cell Biol, 2021, 22(4): 266–282. doi: 10.1038/s41580-020-00324-8
|
[74] |
Singh NK, Rao GN. Emerging role of 12/15-Lipoxygenase (ALOX15) in human pathologies[J]. Prog Lipid Res, 2019, 73: 28–45. doi: 10.1016/j.plipres.2018.11.001
|
[75] |
Wenzel S E, Tyurina Y Y, Zhao J, et al. PEBP1 wardens ferroptosis by enabling lipoxygenase generation of lipid death signals[J]. Cell, 2017, 173(3): 628–641.e26. doi: 10.1016/j.cell.2017.09.044
|
[76] |
Tschuck J, Theilacker L, Rothenaigner I, et al. Farnesoid X receptor activation by bile acids suppresses lipid peroxidation and ferroptosis[J]. Nat Commun, 2023, 14(1): 6908. doi: 10.1038/s41467-023-42702-8
|
[77] |
Ablasser A, Goldeck M, Cavlar T, et al. cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING[J]. Nature, 2013, 498(7454): 380–384. doi: 10.1038/nature12306
|
[78] |
Sun L, Wu J, Du F, et al. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway[J]. Science, 2013, 339(6121): 786–791. doi: 10.1126/science.1232458
|
[79] |
Hopfner KP, Hornung V. Molecular mechanisms and cellular functions of cGAS–STING signalling[J]. Nat Rev Mol Cell Biol, 2020, 21(9): 501–521. doi: 10.1038/s41580-020-0244-x
|
[80] |
Cheng Z, Dai T, He X, et al. The interactions between cGAS-STING pathway and pathogens[J]. Signal Transduct Target Ther, 2020, 5(1): 91. doi: 10.1038/s41392-020-0198-7
|
[81] |
Jia M, Qin D, Zhao C, et al. Redox homeostasis maintained by GPX4 facilitates STING activation[J]. Nat Immunol, 2020, 21(7): 727–735. doi: 10.1038/s41590-020-0699-0
|
[82] |
Li C, Liu J, Hou W, et al. STING1 promotes ferroptosis through MFN1/2-dependent mitochondrial fusion[J]. Front Cell Dev Biol, 2021, 9: 698679. doi: 10.3389/fcell.2021.698679
|
[83] |
Santel A, Fuller MT. Control of mitochondrial morphology by a human mitofusin[J]. J Cell Sci, 2001, 114(5): 867–874. doi: 10.1242/jcs.114.5.867
|
[84] |
Qiu S, Zhong X, Meng X, et al. Mitochondria-localized cGAS suppresses ferroptosis to promote cancer progression[J]. Cell Res, 2023, 33(4): 299–311. doi: 10.1038/s41422-023-00788-1
|
[85] |
Fonseca TB, Sánchez-Guerrero Á, Milosevic I, et al. Mitochondrial fission requires DRP1 but not dynamins[J]. Nature, 2019, 570(7761): E34–E42. doi: 10.1038/s41586-019-1296-y
|
[86] |
Wang W, Green M, Choi JE, et al. CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy[J]. Nature, 2019, 569(7755): 270–274. doi: 10.1038/s41586-019-1170-y
|
[87] |
Kong R, Wang N, Han W, et al. IFNγ-mediated repression of system xc− drives vulnerability to induced ferroptosis in hepatocellular carcinoma cells[J]. J Leukoc Biol, 2021, 110(2): 301–314. doi: 10.1002/JLB.3MA1220-815RRR
|
[88] |
Liau NPD, Laktyushin A, Lucet IS, et al. The molecular basis of JAK/STAT inhibition by SOCS1[J]. Nat Commun, 2018, 9(1): 1558. doi: 10.1038/s41467-018-04013-1
|
[89] |
Saint-Germain E, Mignacca L, Vernier M, et al. SOCS1 regulates senescence and ferroptosis by modulating the expression of p53 target genes[J]. Aging (Albany NY), 2017, 9(10): 2137–2162. https://www.aging-us.com/article/101306/text
|
[90] |
Jiang L, Kon N, Li T, et al. Ferroptosis as a p53-mediated activity during tumour suppression[J]. Nature, 2015, 520(7545): 57–62. doi: 10.1038/nature14344
|
[91] |
Chu B, Kon N, Chen D, et al. ALOX12 is required for p53-mediated tumour suppression through a distinct ferroptosis pathway[J]. Nat Cell Biol, 2019, 21(5): 579–591. doi: 10.1038/s41556-019-0305-6
|
[92] |
Dituri F, Mancarella S, Cigliano A, et al. TGF-β as multifaceted orchestrator in HCC progression: signaling, EMT, immune microenvironment, and novel therapeutic perspectives[J]. Semin Liver Dis, 2019, 39(1): 53–69. doi: 10.1055/s-0038-1676121
|
[93] |
Bachman KE, Park BH. Duel nature of TGF-β signaling: tumor suppressor vs. tumor promoter[J]. Curr Opin Oncol, 2005, 17(1): 49–54. doi: 10.1097/01.cco.0000143682.45316.ae
|
[94] |
Kim DH, Kim WD, Kim SK, et al. TGF-β1-mediated repression of SLC7A11 drives vulnerability to GPX4 inhibition in hepatocellular carcinoma cells[J]. Cell Death Dis, 2020, 11(5): 406. doi: 10.1038/s41419-020-2618-6
|
[95] |
Pedrera L, Espiritu RA, Ros U, et al. Ferroptotic pores induce Ca2+ fluxes and ESCRT-III activation to modulate cell death kinetics[J]. Cell Death Differ, 2021, 28(5): 1644–1657. doi: 10.1038/s41418-020-00691-x
|
[96] |
Zhu Y, Zheng B, Wang H, et al. New knowledge of the mechanisms of sorafenib resistance in liver cancer[J]. Acta Pharmacol Sin, 2017, 38(5): 614–622. doi: 10.1038/aps.2017.5
|
[97] |
Lee SY. Temozolomide resistance in glioblastoma multiforme[J]. Genes Dis, 2016, 3(3): 198–210. doi: 10.1016/j.gendis.2016.04.007
|
[98] |
Sehm T, Rauh M, Wiendieck K, et al. Temozolomide toxicity operates in a xCT/SLC7a11 dependent manner and is fostered by ferroptosis[J]. Oncotarget, 2016, 7(46): 74630–74647. doi: 10.18632/oncotarget.11858
|
[99] |
Koppula P, Zhang Y, Zhuang L, et al. Amino acid transporter SLC7A11/xCT at the crossroads of regulating redox homeostasis and nutrient dependency of cancer[J]. Cancer Commun, 2018, 38(1): 12. doi: 10.1186/s40880-018-0288-x
|
[100] |
Rohr-Udilova N, Bauer E, Timelthaler G, et al. Impact of glutathione peroxidase 4 on cell proliferation, angiogenesis and cytokine production in hepatocellular carcinoma[J]. Oncotarget, 2018, 9(11): 10054–10068. doi: 10.18632/oncotarget.24300
|
[101] |
Chen H, Peng F, Xu J, et al. Increased expression of GPX4 promotes the tumorigenesis of thyroid cancer by inhibiting ferroptosis and predicts poor clinical outcomes[J]. Aging (Albany NY), 2023, 15(1): 230–245. https://www.aging-us.com/article/204473/text
|
[102] |
Jones TD, Eble JN, Wang M, et al. Molecular genetic evidence for the independent origin of multifocal papillary tumors in patients with papillary renal cell carcinomas[J]. Clin Cancer Res, 2005, 11(20): 7226–7233. doi: 10.1158/1078-0432.CCR-04-2597
|
[103] |
Xu F, Guan Y, Xue L, et al. The roles of ferroptosis regulatory gene SLC7A11 in renal cell carcinoma: a multi-omics study[J]. Cancer Med, 2021, 10(24): 9078–9096. doi: 10.1002/cam4.4395
|
[104] |
Yu H, Han Z, Xu Z, et al. RNA sequencing uncovers the key long non-coding RNAs and potential molecular mechanism contributing to XAV939-mediated inhibition of non-small cell lung cancer[J]. Oncol Lett, 2019, 17(6): 4994–5004. doi: 10.3892/ol.2019.10191
|
[105] |
Wu H, Liu A. Long non-coding RNA NEAT1 regulates ferroptosis sensitivity in non-small-cell lung cancer[J]. J Int Med Res, 2021, 49(3): 300060521996183. doi: 10.1177/0300060521996183
|
[106] |
Rysman E, Brusselmans K, Scheys K, et al. De novo lipogenesis protects cancer cells from free radicals and chemotherapeutics by promoting membrane lipid saturation[J]. Cancer Res, 2010, 70(20): 8117–8126. doi: 10.1158/0008-5472.CAN-09-3871
|
[107] |
King ME, Yuan R, Chen J, et al. Long-chain polyunsaturated lipids associated with responsiveness to anti-PD-1 therapy are colocalized with immune infiltrates in the tumor microenvironment[J]. J Biol Chem, 2023, 299(3): 102902. doi: 10.1016/j.jbc.2023.102902
|
[108] |
Liao P, Wang W, Wang W, et al. CD8+ T cells and fatty acids orchestrate tumor ferroptosis and immunity via ACSL4[J]. Cancer Cell, 2022, 40(4): 365–378.e6. doi: 10.1016/j.ccell.2022.02.003
|
[109] |
Xue Y, Lu F, Chang Z, et al. Intermittent dietary methionine deprivation facilitates tumoral ferroptosis and synergizes with checkpoint blockade[J]. Nat Commun, 2023, 14(1): 4758. doi: 10.1038/s41467-023-40518-0
|
[110] |
Castellani RJ, Plascencia-Villa G, Perry G. The amyloid cascade and Alzheimer's disease therapeutics: theory versus observation[J]. Lab Invest, 2019, 99(7): 958–970. doi: 10.1038/s41374-019-0231-z
|
[111] |
Butterfield DA, Boyd-Kimball D. Oxidative stress, amyloid-β peptide, and altered key molecular pathways in the pathogenesis and progression of Alzheimer's disease[J]. J Alzheimer's Dis, 2018, 62(3): 1345–1367. doi: 10.3233/JAD-170543
|
[112] |
Galante D, Cavallo E, Perico A, et al. Effect of ferric citrate on amyloid-beta peptides behavior[J]. Biopolymers, 2018, 109(6): e23224. doi: 10.1002/bip.23224
|
[113] |
Kalia LV, Lang AE. Parkinson's disease[J]. Lancet, 2015, 386(9996): 896–912. doi: 10.1016/S0140-6736(14)61393-3
|
[114] |
Oñate M, Catenaccio A, Salvadores N, et al. The necroptosis machinery mediates axonal degeneration in a model of Parkinson disease[J]. Cell Death Differ, 2020, 27(4): 1169–1185. doi: 10.1038/s41418-019-0408-4
|
[115] |
Wang B, Ma Y, Li S, et al. GSDMD in peripheral myeloid cells regulates microglial immune training and neuroinflammation in Parkinson's disease[J]. Acta Pharm Sin B, 2023, 13(6): 2663–2679. doi: 10.1016/j.apsb.2023.04.008
|
[116] |
Ward RJ, Zucca FA, Duyn JH, et al. The role of iron in brain ageing and neurodegenerative disorders[J]. Lancet Neurol, 2014, 13(10): 1045–1060. doi: 10.1016/S1474-4422(14)70117-6
|
[117] |
Thomas GEC, Leyland LA, Schrag AE, et al. Brain iron deposition is linked with cognitive severity in Parkinson's disease[J]. J Neurol Neurosurg Psychiatry, 2020, 91(4): 418–425. doi: 10.1136/jnnp-2019-322042
|
[118] |
Devos D, Moreau C, Devedjian JC, et al. Targeting chelatable iron as a therapeutic modality in Parkinson's disease[J]. Antioxid Redox Signal, 2014, 21(2): 195–210. doi: 10.1089/ars.2013.5593
|
[119] |
Hu C, Nydes M, Shanley KL, et al. Reduced expression of the ferroptosis inhibitor glutathione peroxidase-4 in multiple sclerosis and experimental autoimmune encephalomyelitis[J]. J Neurochem, 2019, 148(3): 426–439. doi: 10.1111/jnc.14604
|
[120] |
Baranovicova E, Kantorova E, Kalenska D, et al. Thalamic paramagnetic iron by T2* relaxometry correlates with severity of multiple sclerosis[J]. J Biomed Res, 2017, 31(4): 301–305. doi: 10.7555/JBR.31.20160023
|
[121] |
Luoqian J, Yang W, Ding X, et al. Ferroptosis promotes T-cell activation-induced neurodegeneration in multiple sclerosis[J]. Cell Mol Immunol, 2022, 19(8): 913–924. doi: 10.1038/s41423-022-00883-0
|
[122] |
Weiland A, Wang Y, Wu W, et al. Ferroptosis and its role in diverse brain diseases[J]. Mol Neurobiol, 2019, 56(7): 4880–4893. doi: 10.1007/s12035-018-1403-3
|
[123] |
Skouta R, Dixon SJ, Wang J, et al. Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models[J]. J Am Chem Soc, 2014, 136(12): 4551–4556. doi: 10.1021/ja411006a
|
[124] |
Jiang Y, Ma C, Hu Y, et al. ECSIT is a critical factor for controlling intestinal homeostasis and tumorigenesis through regulating the translation of YAP protein[J]. Adv Sci, 2023, 10(25): 2205180. doi: 10.1002/advs.202205180
|
[125] |
Garrett WS, Gordon JI, Glimcher LH. Homeostasis and inflammation in the intestine[J]. Cell, 2010, 140(6): 859–870. doi: 10.1016/j.cell.2010.01.023
|
[126] |
Bourgonje AR, von Martels JZH, Bulthuis MLC, et al. Crohn's disease in clinical remission is marked by systemic oxidative stress[J]. Front Physiol, 2019, 10: 499. doi: 10.3389/fphys.2019.00499
|
[127] |
Balmus IM, Ciobica A, Trifan A, et al. The implications of oxidative stress and antioxidant therapies in inflammatory bowel disease: clinical aspects and animal models[J]. Saudi J Gastroenterol, 2016, 22(1): 3–17. doi: 10.4103/1319-3767.173753
|
[128] |
Banerjee P, Balraj P, Ambhore NS, et al. Network and co-expression analysis of airway smooth muscle cell transcriptome delineates potential gene signatures in asthma[J]. Sci Rep, 2021, 11(1): 14386. doi: 10.1038/s41598-021-93845-x
|
[129] |
Zhao J, O'Donnell VB, Balzar S, et al. 15-Lipoxygenase 1 interacts with phosphatidylethanolamine-binding protein to regulate MAPK signaling in human airway epithelial cells[J]. Proc Natl Acad Sci U S A, 2011, 108(34): 14246–14251. doi: 10.1073/pnas.1018075108
|
[130] |
Wu Y, Chen H, Xuan N, et al. Induction of ferroptosis-like cell death of eosinophils exerts synergistic effects with glucocorticoids in allergic airway inflammation[J]. Thorax, 2020, 75(11): 918–927. doi: 10.1136/thoraxjnl-2020-214764
|
[131] |
Chen Z, Wang W, Abdul Razak SR, et al. Ferroptosis as a potential target for cancer therapy[J]. Cell Death Dis, 2023, 14(7): 460. doi: 10.1038/s41419-023-05930-w
|
[132] |
Huang K, Wei YH, Chiu YC, et al. Assessment of zero-valent iron-based nanotherapeutics for ferroptosis induction and resensitization strategy in cancer cells[J]. Biomater Sci, 2019, 7(4): 1311–1322. doi: 10.1039/C8BM01525B
|
[133] |
Xu J, Zhang H, Zhang Y, et al. Controllable synthesis of variable-sized magnetic nanocrystals self-assembled into porous nanostructures for enhanced cancer chemo-ferroptosis therapy and MR imaging[J]. Nanoscale Adv, 2022, 4(3): 782–791. doi: 10.1039/D1NA00767J
|
[134] |
Yang WS, SriRamaratnam R, Welsch ME, et al. Regulation of ferroptotic cancer cell death by GPX4[J]. Cell, 2014, 156(1-2): 317–331. doi: 10.1016/j.cell.2013.12.010
|
[135] |
Sui X, Zhang R, Liu S, et al. RSL3 drives ferroptosis through GPX4 inactivation and ROS production in colorectal cancer[J]. Front Pharmacol, 2018, 9: 1371. doi: 10.3389/fphar.2018.01371
|
[136] |
Shimada K, Skouta R, Kaplan A, et al. Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis[J]. Nat Chem Biol, 2016, 12(7): 497–503. doi: 10.1038/nchembio.2079
|
[137] |
Zhang X, Guo Y, Li H, et al. FIN56, a novel ferroptosis inducer, triggers lysosomal membrane permeabilization in a TFEB-dependent manner in glioblastoma[J]. J Cancer, 2021, 12(22): 6610–6619. doi: 10.7150/jca.58500
|
[138] |
Zhao Y, Li Y, Zhang R, et al. The role of erastin in ferroptosis and its prospects in cancer therapy[J]. Onco Targets Ther, 2020, 13: 5429–5441. doi: 10.2147/OTT.S254995
|
[139] |
Sato M, Kusumi R, Hamashima S, et al. The ferroptosis inducer erastin irreversibly inhibits system xc− and synergizes with cisplatin to increase cisplatin's cytotoxicity in cancer cells[J]. Sci Rep, 2018, 8(1): 968. doi: 10.1038/s41598-018-19213-4
|
[140] |
Yamaguchi H, Hsu JL, Chen C, et al. Caspase-independent cell death is involved in the negative effect of EGF receptor inhibitors on cisplatin in non–small cell lung cancer cells[J]. Clin Cancer Res, 2013, 19(4): 845–854. doi: 10.1158/1078-0432.CCR-12-2621
|
[141] |
Chen L, Li X, Liu L, et al. Erastin sensitizes glioblastoma cells to temozolomide by restraining xCT and cystathionine-γ-lyase function[J]. Oncol Rep, 2015, 33(3): 1465–1474. doi: 10.3892/or.2015.3712
|
[142] |
Lo M, Ling V, Low C, et al. Potential use of the anti-inflammatory drug, sulfasalazine, for targeted therapy of pancreatic cancer[J]. Curr Oncol, 2010, 17(3): 9–16. doi: 10.3747/co.v17i3.485
|
[143] |
Tang X, Ding H, Liang M, et al. Curcumin induces ferroptosis in non-small-cell lung cancer via activating autophagy[J]. Thorac Cancer, 2021, 12(8): 1219–1230. doi: 10.1111/1759-7714.13904
|
[144] |
Gai C, Yu M, Li Z, et al. Acetaminophen sensitizing erastin-induced ferroptosis via modulation of Nrf2/heme oxygenase-1 signaling pathway in non-small-cell lung cancer[J]. J Cell Physiol, 2020, 235(4): 3329–3339. doi: 10.1002/jcp.29221
|
[145] |
Nakamura T, Hipp C, Santos Dias Mourão A, et al. Phase separation of FSP1 promotes ferroptosis[J]. Nature, 2023, 619(7969): 371–377. doi: 10.1038/s41586-023-06255-6
|
[146] |
Chu J, Liu C, Song R, et al. Ferrostatin-1 protects HT-22 cells from oxidative toxicity[J]. Neural Regen Res, 2020, 15(3): 528. doi: 10.4103/1673-5374.266060
|
[147] |
Sheng X, Shan C, Liu J, et al. Theoretical insights into the mechanism of ferroptosis suppression via inactivation of a lipid peroxide radical by liproxstatin-1[J]. Phys Chem Chem Phys, 2017, 19(20): 13153–13159. doi: 10.1039/C7CP00804J
|
[148] |
Zilka O, Shah R, Li B, et al. On the mechanism of cytoprotection by ferrostatin-1 and liproxstatin-1 and the role of lipid peroxidation in ferroptotic cell death[J]. ACS Cent Sci, 2017, 3(3): 232–243. doi: 10.1021/acscentsci.7b00028
|
[149] |
Deschamps JD, Kenyon VA, Holman TR. Baicalein is a potent in vitro inhibitor against both reticulocyte 15-human and platelet 12-human lipoxygenases[J]. Bioorg Med Chem, 2006, 14(12): 4295–4301. doi: 10.1016/j.bmc.2006.01.057
|
[150] |
Gu X, Xu L, Liu Z, et al. The flavonoid baicalein rescues synaptic plasticity and memory deficits in a mouse model of Alzheimer's disease[J]. Behav Brain Res, 2016, 311: 309–321. doi: 10.1016/j.bbr.2016.05.052
|
[151] |
Li Q, Li Q, Jia J, et al. Baicalein exerts neuroprotective effects in FeCl3-induced posttraumatic epileptic seizures via suppressing ferroptosis[J]. Front Pharmacol, 2019, 10: 638. doi: 10.3389/fphar.2019.00638
|
[152] |
Wan Y, Shen K, Yu H, et al. Baicalein limits osteoarthritis development by inhibiting chondrocyte ferroptosis[J]. Free Radical Biol Med, 2023, 196: 108–120. doi: 10.1016/j.freeradbiomed.2023.01.006
|
[153] |
Liu J, Zhou H, Chen J, et al. Baicalin inhibits IL-1β-induced ferroptosis in human osteoarthritis chondrocytes by activating Nrf-2 signaling pathway[J]. J Orthop Surg Res, 2024, 19(1): 23. doi: 10.1186/s13018-023-04483-0
|
[154] |
Dang R, Wang M, Li X, et al. Edaravone ameliorates depressive and anxiety-like behaviors via Sirt1/Nrf2/HO-1/Gpx4 pathway[J]. J Neuroinflammation, 2022, 19(1): 41. doi: 10.1186/s12974-022-02400-6
|
[155] |
Ni H, Song Y, Wu H, et al. 2-Methyl-5H-benzo [d] pyrazolo [5, 1-b][1, 3] oxazin-5-imine, an edaravone analog, exerts neuroprotective effects against acute ischemic injury via inhibiting oxidative stress[J]. J Biomed Res, 2018, 32(4): 270. doi: 10.7555/JBR.32.20180014
|
[156] |
Li Y, Feng D, Wang Z, et al. Ischemia-induced ACSL4 activation contributes to ferroptosis-mediated tissue injury in intestinal ischemia/reperfusion[J]. Cell Death Differ, 2019, 26(11): 2284–2299. doi: 10.1038/s41418-019-0299-4
|
[157] |
Li Q, Liao J, Chen W, et al. NAC alleviative ferroptosis in diabetic nephropathy via maintaining mitochondrial redox homeostasis through activating SIRT3-SOD2/Gpx4 pathway[J]. Free Radical Biol Med, 2022, 187: 158–170. doi: 10.1016/j.freeradbiomed.2022.05.024
|
[158] |
Poggiali E, Cassinerio E, Zanaboni L, et al. An update on iron chelation therapy[J]. Blood Transfus, 2012, 10(4): 411–422. doi: 10.2450/2012.0008-12
|
[159] |
Wu Y, Ran L, Yang Y, et al. Deferasirox alleviates DSS-induced ulcerative colitis in mice by inhibiting ferroptosis and improving intestinal microbiota[J]. Life Sci, 2023, 314: 121312. doi: 10.1016/j.lfs.2022.121312
|
[160] |
Yao X, Zhang Y, Hao J, et al. Deferoxamine promotes recovery of traumatic spinal cord injury by inhibiting ferroptosis[J]. Neural Regen Res, 2019, 14(3): 532–541. doi: 10.4103/1673-5374.245480
|
[161] |
Yang W, Mu B, You J, et al. Non-classical ferroptosis inhibition by a small molecule targeting PHB2[J]. Nat Commun, 2022, 13(1): 7473. doi: 10.1038/s41467-022-35294-2
|
[162] |
Grootjans S, Vanden Berghe T, Vandenabeele P. Initiation and execution mechanisms of necroptosis: an overview[J]. Cell Death Differ, 2017, 24(7): 1184–1195. doi: 10.1038/cdd.2017.65
|
[163] |
Cai Z, Jitkaew S, Zhao J, et al. Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis[J]. Nat cell Biol, 2014, 16(1): 55–65. doi: 10.1038/ncb2883
|
[164] |
Fadok VA, Voelker DR, Campbell PA, et al. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages[J]. J Immunol, 1992, 148(7): 2207–2216. doi: 10.4049/jimmunol.148.7.2207
|
[165] |
Ellis RE, Yuan J, Horvitz HR. Mechanisms and functions of cell death[J]. Annu Rev Cell Biol, 1991, 7: 663–698. doi: 10.1146/annurev.cb.07.110191.003311
|
[166] |
Chen X, He W, Hu L, et al. Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis[J]. Cell Res, 2016, 26(9): 1007–1020. doi: 10.1038/cr.2016.100
|
[167] |
Liu X, Zhang Z, Ruan J, et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores[J]. Nature, 2016, 535(7610): 153–158. doi: 10.1038/nature18629
|
[168] |
Edinger AL, Thompson CB. Death by design: apoptosis, necrosis and autophagy[J]. Curr Opin Cell Biol, 2004, 16(6): 663–669. doi: 10.1016/j.ceb.2004.09.011
|
[1] | Yingzhou Tu, Sen Wang, Haoran Wang, Peiyao Zhang, Mengyu Wang, Cunming Liu, Chun Yang, Riyue Jiang. The role of perioperative factors in the prognosis of cancer patients: A coin has two sides[J]. The Journal of Biomedical Research. DOI: 10.7555/JBR.38.20240164 |
[2] | Rampes Sanketh, Ma Katie, Divecha Yasmin Amy, Alam Azeem, Ma Daqing. Postoperative sleep disorders and their potential impacts on surgical outcomes[J]. The Journal of Biomedical Research, 2020, 34(4): 271-280. DOI: 10.7555/JBR.33.20190054 |
[3] | Huan Liu, Shijiang Zhang, Yongfeng Shao, Xiaohu Lu, Weidong Gu, Buqing Ni, Qun Gu, Junjie Du. Biomechanical characterization of a novel ring connector for sutureless aortic anastomosis[J]. The Journal of Biomedical Research, 2018, 32(6): 454-460. DOI: 10.7555/JBR.31.20170011 |
[4] | Minbo Zang, Qiao Zhou, Yunfei Zhu, Mingxi Liu, Zuomin Zhou. Effects of chemotherapeutic agent bendamustine for nonhodgkin lymphoma on spermatogenesis in mice[J]. The Journal of Biomedical Research, 2018, 32(6): 442-453. DOI: 10.7555/JBR.31.20170023 |
[5] | Kaibo Lin, Shikun Zhang, Jieli Chen, Ding Yang, Mengyi Zhu, Eugene Yujun Xu. Generation and functional characterization of a conditional Pumilio2 null allele[J]. The Journal of Biomedical Research, 2018, 32(6): 434-441. DOI: 10.7555/JBR.32.20170117 |
[6] | Fengzhen Wang, Mingwan Zhang, Dongsheng Zhang, Yuan Huang, Li Chen, Sunmin Jiang, Kun Shi, Rui Li. Preparation, optimization, and characterization of chitosancoated solid lipid nanoparticles for ocular drug delivery[J]. The Journal of Biomedical Research, 2018, 32(6): 411-423. DOI: 10.7555/JBR.32.20160170 |
[7] | Christopher J. Danford, Zemin Yao, Z. Gordon Jiang. Non-alcoholic fatty liver disease: a narrative review of genetics[J]. The Journal of Biomedical Research, 2018, 32(6): 389-400. DOI: 10.7555/JBR.32.20180045 |
[8] | Zhaosheng Jin, Ka Chun Suen, Daqing Ma. Perioperative “remote” acute lung injury: recent update[J]. The Journal of Biomedical Research, 2017, 31(3): 197-212. DOI: 10.7555/JBR.31.20160053 |
[9] | Dominik Choromanski, Joel Frederick, George Michael Mckelvey, Hong Wang. Intraoperative patient information handover between anesthesia providers[J]. The Journal of Biomedical Research, 2014, 28(5): 383-387. DOI: 10.7555/JBR.28.20140001 |
[10] | Sundeep?S.?Tumber, Hong?Liu. Epidural abscess after multiple lumbar punctures for labour epidural catheter placement[J]. The Journal of Biomedical Research, 2010, 24(4): 332-335. DOI: 10.1016/S1674-8301(10)60046-2 |