Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Volume 36 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
Xiaolong Zheng, Wei Wang. Astrocyte transplantation for repairing the injured spinal cord[J]. The Journal of Biomedical Research, 2022, 36(5): 312-320. doi: 10.7555/JBR.36.20220012
Citation: Xiaolong Zheng, Wei Wang. Astrocyte transplantation for repairing the injured spinal cord[J]. The Journal of Biomedical Research, 2022, 36(5): 312-320. doi: 10.7555/JBR.36.20220012

Astrocyte transplantation for repairing the injured spinal cord

doi: 10.7555/JBR.36.20220012
More Information
  • Corresponding author: Wei Wang, Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei 430030, China. Tel: +86-27-83663657, E-mail: wwang@vip.126.com
  • Received: 2022-01-11
  • Revised: 2022-04-13
  • Accepted: 2022-05-13
  • Published: 2022-06-28
  • Issue Date: 2022-09-28
  • Spinal cord injury (SCI) leads to permanent deficits in neural function without effective therapies, which places a substantial burden on families and society. Astrocytes, the major glia supporting the normal function of neurons in the spinal cord, become active and form glial scars after SCI, which has long been regarded as a barrier for axon regeneration. However, recent progress has indicated the beneficial role of astrocytes in spinal repair. During the past three decades, astrocyte transplantation for SCI treatment has gained increasing attention. In this review, we first summarize the progress of using rodent astrocytes as the primary step for spinal repair. Rodent astrocytes can survive well, migrate extensively, and mature in spinal injury; they can also inhibit host reactive glial scar formation, stimulate host axon regeneration, and promote motor, sensory, respiratory, and autonomic functional recovery. Then, we review the progress in spinal repair by using human astrocytes of various origins, including the fetal brain, fetal spinal cord, and pluripotent stem cells. Finally, we introduce some key questions that merit further research in the future, including rapid generation of large amounts of human astrocytes with high purity, identification of the right origins of astrocytes to maximize neural function improvement while minimizing side effects, testing human astrocyte transplantation in chronic SCI, and verification of the long-term efficacy and safety in large animal models.


  • CLC number: R651.2, Document code: A
    The authors reported no conflict of interests.
  • loading
  • [1]
    Ahuja CS, Wilson JR, Nori S, et al. Traumatic spinal cord injury[J]. Nat Rev Dis Primers, 2017, 3: 17018. doi: 10.1038/nrdp.2017.18
    GBD 2016 Traumatic Brain Injury and Spinal Cord Injury Collaborators. Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016[J]. Lancet Neurol, 2019, 18(1): 56–87. doi: 10.1016/S1474-4422(18)30415-0
    O'Shea TM, Burda JE, Sofroniew MV. Cell biology of spinal cord injury and repair[J]. J Clin Investigation, 2017, 127(9): 3259–3270. doi: 10.1172/JCI90608
    Assinck P, Duncan GJ, Hilton BJ, et al. Cell transplantation therapy for spinal cord injury[J]. Nat Neurosci, 2017, 20(5): 637–647. doi: 10.1038/nn.4541
    Vismara I, Papa S, Rossi F, et al. Current options for cell therapy in spinal cord injury[J]. Trends Mol Med, 2017, 23(9): 831–849. doi: 10.1016/j.molmed.2017.07.005
    Fischer I, Dulin JN, Lane MA. Transplanting neural progenitor cells to restore connectivity after spinal cord injury[J]. Nat Rev Neurosci, 2020, 21(7): 366–383. doi: 10.1038/s41583-020-0314-2
    Keirstead HS, Nistor G, Bernal G, et al. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury[J]. J Neurosci, 2005, 25(19): 4694–4705. doi: 10.1523/JNEUROSCI.0311-05.2005
    Kawabata S, Takano M, Numasawa-Kuroiwa Y, et al. Grafted human iPS cell-derived oligodendrocyte precursor cells contribute to robust remyelination of demyelinated axons after spinal cord injury[J]. Stem Cell Reports, 2016, 6(1): 1–8. doi: 10.1016/j.stemcr.2015.11.013
    Nagoshi N, Khazaei M, Ahlfors JE, et al. Human spinal oligodendrogenic neural progenitor cells promote functional recovery after spinal cord injury by axonal remyelination and tissue sparing[J]. Stem Cells Transl Med, 2018, 7(11): 806–818. doi: 10.1002/sctm.17-0269
    Verkhratsky A, Nedergaard M. Physiology of astroglia[J]. Physiol Rev, 2018, 98(1): 239–389. doi: 10.1152/physrev.00042.2016
    Silver J, Miller JH. Regeneration beyond the glial scar[J]. Nat Rev Neurosci, 2004, 5(2): 146–156. doi: 10.1038/nrn1326
    Faulkner JR, Herrmann JE, Woo MJ, et al. Reactive astrocytes protect tissue and preserve function after spinal cord injury[J]. J Neurosci, 2004, 24(9): 2143–2155. doi: 10.1523/JNEUROSCI.3547-03.2004
    Gu Y, Cheng X, Huang X, et al. Conditional ablation of reactive astrocytes to dissect their roles in spinal cord injury and repair[J]. Brain Behav Immun, 2019, 80: 394–405. doi: 10.1016/j.bbi.2019.04.016
    Anderson MA, Burda JE, Ren Y, et al. Astrocyte scar formation aids central nervous system axon regeneration[J]. Nature, 2016, 532(7598): 195–200. doi: 10.1038/nature17623
    Song JJ, Oh SM, Kwon OC, et al. Cografting astrocytes improves cell therapeutic outcomes in a Parkinson's disease model[J]. J Clin Invest, 2018, 128(1): 463–482. doi: 10.1172/JCI93924
    Hedegaard A, Monzón-Sandoval J, Newey SE, et al. Pro-maturational effects of human iPSC-derived cortical astrocytes upon iPSC-derived cortical neurons[J]. Stem Cell Reports, 2020, 15(1): 38–51. doi: 10.1016/j.stemcr.2020.05.003
    Han X, Chen M, Wang F, et al. Forebrain engraftment by human glial progenitor cells enhances synaptic plasticity and learning in adult mice[J]. Cell Stem Cell, 2013, 12(3): 342–353. doi: 10.1016/j.stem.2012.12.015
    Jiang P, Chen C, Liu X, et al. Human iPSC-derived immature astroglia promote oligodendrogenesis by increasing TIMP-1 secretion[J]. Cell Reports, 2016, 15(6): 1303–1315. doi: 10.1016/j.celrep.2016.04.011
    Noble M, Davies JE, Mayer-Pröschel M, et al. Precursor cell biology and the development of astrocyte transplantation therapies: lessons from spinal cord injury[J]. Neurotherapeutics, 2011, 8(4): 677–693. doi: 10.1007/s13311-011-0071-z
    Chu T, Zhou H, Li F, et al. Astrocyte transplantation for spinal cord injury: current status and perspective[J]. Brain Res Bull, 2014, 107: 18–30. doi: 10.1016/j.brainresbull.2014.05.003
    Falnikar A, Li K, Lepore AC. Therapeutically targeting astrocytes with stem and progenitor cell transplantation following traumatic spinal cord injury[J]. Brain Res, 2015, 1619: 91–103. doi: 10.1016/j.brainres.2014.09.037
    Nicaise C, Mitrecic D, Falnikar A, et al. Transplantation of stem cell-derived astrocytes for the treatment of amyotrophic lateral sclerosis and spinal cord injury[J]. World J Stem Cells, 2015, 7(2): 380–398. doi: 10.4252/wjsc.v7.i2.380
    Chen C, Chan A, Wen H, et al. Stem and progenitor cell-derived astroglia therapies for neurological diseases[J]. Trends Mol Med, 2015, 21(11): 715–729. doi: 10.1016/j.molmed.2015.09.003
    Martins-Macedo J, Lepore AC, Domingues HS, et al. Glial restricted precursor cells in central nervous system disorders: current applications and future perspectives[J]. Glia, 2021, 69(3): 513–531. doi: 10.1002/glia.23922
    Han SSW, Liu Y, Tyler-Polsz C, et al. Transplantation of glial-restricted precursor cells into the adult spinal cord: survival, glial-specific differentiation, and preferential migration in white matter[J]. Glia, 2004, 45(1): 1–16. doi: 10.1002/glia.10282
    Lepore AC, Fischer I. Lineage-restricted neural precursors survive, migrate, and differentiate following transplantation into the injured adult spinal cord[J]. Exp Neurol, 2005, 194(1): 230–242. doi: 10.1016/j.expneurol.2005.02.020
    Haas C, Neuhuber B, Yamagami T, et al. Phenotypic analysis of astrocytes derived from glial restricted precursors and their impact on axon regeneration[J]. Exp Neurol, 2012, 233(2): 717–732. doi: 10.1016/j.expneurol.2011.11.002
    Hill CE, Proschel C, Noble M, et al. Acute transplantation of glial-restricted precursor cells into spinal cord contusion injuries: survival, differentiation, and effects on lesion environment and axonal regeneration[J]. Exp Neurol, 2004, 190(2): 289–310. doi: 10.1016/j.expneurol.2004.05.043
    Wang JJ, Chuah MI, Yew DTW, et al. Effects of astrocyte implantation into the hemisected adult rat spinal cord[J]. Neuroscience, 1995, 65(4): 973–981. doi: 10.1016/0306-4522(94)00519-B
    Pencalet P, Serguera C, Corti O, et al. Integration of genetically modified adult astrocytes into the lesioned rat spinal cord[J]. J Neurosci Res, 2006, 83(1): 61–67. doi: 10.1002/jnr.20697
    Kliot M, Smith GM, Siegal JD, et al. Astrocyte-polymer implants promote regeneration of dorsal root fibers into the adult mammalian spinal cord[J]. Exp Neurol, 1990, 109(1): 57–69. doi: 10.1016/S0014-4886(05)80008-1
    Kadoya K, Lu P, Nguyen K, et al. Spinal cord reconstitution with homologous neural grafts enables robust corticospinal regeneration[J]. Nat Med, 2016, 22(5): 479–487. doi: 10.1038/nm.4066
    Olby NJ, Blakemore WF. Reconstruction of the glial environment of a photochemically induced lesion in the rat spinal cord by transplantation of mixed glial cells[J]. J Neurocytol, 1996, 25(1): 481–498. doi: 10.1007/BF02284817
    Schackel T, Kumar P, Günther M, et al. Peptides and astroglia improve the regenerative capacity of alginate gels in the injured spinal cord[J]. Tissue Eng Part A, 2019, 25(7–8): 522–537. doi: 10.1089/ten.tea.2018.0082
    Anderson KD. Targeting recovery: priorities of the spinal cord-injured population[J]. J Neurotrauma, 2004, 21(10): 1371–1383. doi: 10.1089/neu.2004.21.1371
    Simpson LA, Eng JJ, Hsieh JTC, et al. The health and life priorities of individuals with spinal cord injury: a systematic review[J]. J Neurotrauma, 2012, 29(8): 1548–1555. doi: 10.1089/neu.2011.2226
    Bernstein JJ, Goldberg WJ. Grafted fetal astrocyte migration can prevent host neuronal atrophy: comparison of astrocytes from cultures and whole piece donors[J]. Restor Neurol Neurosci, 1991, 2(4-6): 261–270. doi: 10.3233/RNN-1991-245615
    Davies JE, Huang C, Proschel C, et al. Astrocytes derived from glial-restricted precursors promote spinal cord repair[J]. J Biol, 2006, 5(3): 7. doi: 10.1186/jbiol35
    Davies JE, Pröschel C, Zhang N, et al. Transplanted astrocytes derived from BMP- or CNTF-treated glial-restricted precursors have opposite effects on recovery and allodynia after spinal cord injury[J]. J Biol, 2008, 7(7): 24. doi: 10.1186/jbiol85
    Fan C, Zheng Y, Cheng X, et al. Transplantation of D15A-expressing glial-restricted-precursor-derived astrocytes improves anatomical and locomotor recovery after spinal cord injury[J]. Int J Biol Sci, 2013, 9(1): 78–93. doi: 10.7150/ijbs.5626
    Wu L, Li J, Chen L, et al. Combined transplantation of GDAsBMP and hr-decorin in spinal cord contusion repair[J]. Neural Regen Res, 2013, 8(24): 2236–2248. doi: 10.3969/j.issn.1673-5374.2013.24.003
    Mitsui T, Shumsky JS, Lepore AC, et al. Transplantation of neuronal and glial restricted precursors into contused spinal cord improves bladder and motor functions, decreases thermal hypersensitivity, and modifies intraspinal circuitry[J]. J Neurosci, 2005, 25(42): 9624–9636. doi: 10.1523/JNEUROSCI.2175-05.2005
    Joosten EAJ, Veldhuis WB, Hamers FPT. Collagen containing neonatal astrocytes stimulates regrowth of injured fibers and promotes modest locomotor recovery after spinal cord injury[J]. J Neurosci Res, 2004, 77(1): 127–142. doi: 10.1002/jnr.20088
    Xu J, Bernreuther C, Cui Y, et al. Transplanted L1 expressing radial glia and astrocytes enhance recovery after spinal cord injury[J]. J Neurotrauma, 2011, 28(9): 1921–1937. doi: 10.1089/neu.2011.1783
    Hofstetter CP, Holmström NAV, Lilja JA, et al. Allodynia limits the usefulness of intraspinal neural stem cell grafts; directed differentiation improves outcome[J]. Nat Neurosci, 2005, 8(3): 346–353. doi: 10.1038/nn1405
    Macias MY, Syring MB, Pizzi MA, et al. Pain with no gain: allodynia following neural stem cell transplantation in spinal cord injury[J]. Exp Neurol, 2006, 201(2): 335–348. doi: 10.1016/j.expneurol.2006.04.035
    Hayashi K, Hashimoto M, Koda M, et al. Increase of sensitivity to mechanical stimulus after transplantation of murine induced pluripotent stem cell-derived astrocytes in a rat spinal cord injury model[J]. J Neurosurg Spine, 2011, 15(6): 582–593. doi: 10.3171/2011.7.SPINE10775
    Goulão M, Ghosh B, Urban MW, et al. Astrocyte progenitor transplantation promotes regeneration of bulbospinal respiratory axons, recovery of diaphragm function, and a reduced macrophage response following cervical spinal cord injury[J]. Glia, 2019, 67(3): 452–466. doi: 10.1002/glia.23555
    Li K, Javed E, Hala TJ, et al. Transplantation of glial progenitors that overexpress glutamate transporter GLT1 preserves diaphragm function following cervical SCI[J]. Mol Ther, 2015, 23(3): 533–548. doi: 10.1038/mt.2014.236
    Jin Y, Shumsky JS, Fischer I. Axonal regeneration of different tracts following transplants of human glial restricted progenitors into the injured spinal cord in rats[J]. Brain Res, 2018, 1686: 101–112. doi: 10.1016/j.brainres.2018.01.030
    Haas C, Fischer I. Human astrocytes derived from glial restricted progenitors support regeneration of the injured spinal cord[J]. J Neurotrauma, 2013, 30(12): 1035–1052. doi: 10.1089/neu.2013.2915
    Jin Y, Neuhuber B, Singh A, et al. Transplantation of human glial restricted progenitors and derived astrocytes into a contusion model of spinal cord injury[J]. J Neurotrauma, 2011, 28(4): 579–594. doi: 10.1089/neu.2010.1626
    Davies SJA, Shih CH, Noble M, et al. Transplantation of specific human astrocytes promotes functional recovery after spinal cord injury[J]. PLoS One, 2011, 6(3): e17328. doi: 10.1371/journal.pone.0017328
    Shamblott MJ, Axelman J, Wang S, et al. Derivation of pluripotent stem cells from cultured human primordial germ cells[J]. Proc Natl Acad Sci U S A, 1998, 95(23): 13726–13731. doi: 10.1073/pnas.95.23.13726
    Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts[J]. Science, 1998, 282(5391): 1145–1147. doi: 10.1126/science.282.5391.1145
    Reubinoff BE, Pera MF, Fong CY, et al. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro[J]. Nat Biotechnol, 2000, 18(4): 399–404. doi: 10.1038/74447
    Reubinoff BE, Itsykson P, Turetsky T, et al. Neural progenitors from human embryonic stem cells[J]. Nat Biotechnol, 2001, 19(12): 1134–1140. doi: 10.1038/nbt1201-1134
    Zhang S, Wernig M, Duncan ID, et al. In vitro differentiation of transplantable neural precursors from human embryonic stem cells[J]. Nat Biotechnol, 2001, 19(12): 1129–1133. doi: 10.1038/nbt1201-1129
    Chen H, Qian K, Chen W, et al. Human-derived neural progenitors functionally replace astrocytes in adult mice[J]. J Clin Invest, 2015, 125(3): 1033–1042. doi: 10.1172/JCI69097
    Lu P, Ceto S, Wang Y, et al. Prolonged human neural stem cell maturation supports recovery in injured rodent CNS[J]. J Clin Invest, 2017, 127(9): 3287–3299. doi: 10.1172/JCI92955
    Lien BV, Tuszynski MH, Lu P. Astrocytes migrate from human neural stem cell grafts and functionally integrate into the injured rat spinal cord[J]. Exp Neurol, 2019, 314: 46–57. doi: 10.1016/j.expneurol.2019.01.006
    Roybon L, Lamas NJ, Garcia-Diaz A, et al. Human stem cell-derived spinal cord astrocytes with defined mature or reactive phenotypes[J]. Cell Reports, 2013, 4(5): 1035–1048. doi: 10.1016/j.celrep.2013.06.021
    Haidet-Phillips AM, Roybon L, Gross SK, et al. Gene profiling of human induced pluripotent stem cell-derived astrocyte progenitors following spinal cord engraftment[J]. Stem Cells Transl Med, 2014, 3(5): 575–585. doi: 10.5966/sctm.2013-0153
    Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006, 126(4): 663–676. doi: 10.1016/j.cell.2006.07.024
    Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors[J]. Cell, 2007, 131(5): 861–872. doi: 10.1016/j.cell.2007.11.019
    Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells[J]. Science, 2007, 318(5858): 1917–1920. doi: 10.1126/science.1151526
    Li K, Javed E, Scura D, et al. Human iPS cell-derived astrocyte transplants preserve respiratory function after spinal cord injury[J]. Exp Neurol, 2015, 271: 479–492. doi: 10.1016/j.expneurol.2015.07.020
    Qian K, Huang H, Peterson A, et al. Sporadic ALS astrocytes induce neuronal degeneration in vivo[J]. Stem Cell Reports, 2017, 8(4): 843–855. doi: 10.1016/j.stemcr.2017.03.003
    Krencik R, Weick JP, Liu Y, et al. Specification of transplantable astroglial subtypes from human pluripotent stem cells[J]. Nat Biotechnol, 2011, 29(6): 528–534. doi: 10.1038/nbt.1877
    Krencik R, Zhang S. Directed differentiation of functional astroglial subtypes from human pluripotent stem cells[J]. Nat Protoc, 2011, 6(11): 1710–1717. doi: 10.1038/nprot.2011.405
    Li X, Tao Y, Bradley R, et al. Fast generation of functional subtype astrocytes from human pluripotent stem cells[J]. Stem Cell Reports, 2018, 11(4): 998–1008. doi: 10.1016/j.stemcr.2018.08.019
    Tchieu J, Calder EL, Guttikonda SR, et al. NFIA is a gliogenic switch enabling rapid derivation of functional human astrocytes from pluripotent stem cells[J]. Nat Biotechnol, 2019, 37(3): 267–275. doi: 10.1038/s41587-019-0035-0
    Bradley RA, Shireman J, McFalls C, et al. Regionally specified human pluripotent stem cell-derived astrocytes exhibit different molecular signatures and functional properties[J]. Development, 2019, 146(13): dev170910. doi: 10.1242/dev.170910
    Kumamaru H, Kadoya K, Adler AF, et al. Generation and post-injury integration of human spinal cord neural stem cells[J]. Nat Methods, 2018, 15(9): 723–731. doi: 10.1038/s41592-018-0074-3
    van Middendorp JJ, Allison H, Cowan K, et al. Top ten research priorities for spinal cord injury[J]. Lancet Neurol, 2014, 13(12): 1167. doi: 10.1016/S1474-4422(14)70253-4
    Courtine G, Bunge MB, Fawcett JW, et al. Can experiments in nonhuman primates expedite the translation of treatments for spinal cord injury in humans?[J]. Nat Med, 2007, 13(5): 561–566. doi: 10.1038/nm1595
    Kwon BK, Streijger F, Hill CE, et al. Large animal and primate models of spinal cord injury for the testing of novel therapies[J]. Exp Neurol, 2015, 269: 154–168. doi: 10.1016/j.expneurol.2015.04.008
    Kwon BK, Soril LJJ, Bacon M, et al. Demonstrating efficacy in preclinical studies of cellular therapies for spinal cord injury - How much is enough?[J]. Exp Neurol, 2013, 248: 30–44. doi: 10.1016/j.expneurol.2013.05.012
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (1334) PDF downloads(195) Cited by()
    Proportional views
    Relative Articles


    DownLoad:  Full-Size Img  PowerPoint