Citation: | Wang Siwan, Jiang Hui, Wang Jia, Wu Haisi, Wu Ting, Ni Mengnan, Zhao Qianqian, Ji You, Zhang Ziting, Tang Chunming, Xu Huae. Superior in vitro anticancer effect of biomimetic paclitaxel and triptolide co-delivery system in gastric cancer[J]. The Journal of Biomedical Research, 2021, 35(4): 327-338. DOI: 10.7555/JBR.35.20210102 |
[1] |
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394–424. doi: 10.3322/caac.21492
|
[2] |
Chen W, Sun K, Zheng R, et al. Cancer incidence and mortality in China, 2014[J]. Chin J Cancer Res, 2018, 30(1): 1–12. doi: 10.21147/j.issn.1000-9604.2018.01.01
|
[3] |
China-fact-sheets. The global cancer observatory[EB/OL]. [2020-11-25]. https://gco.iarc.fr/today/data/factsheets/populations/160-china-fact-sheets.pdf.
|
[4] |
Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012[J]. Int J Cancer, 2015, 136: E359–386. doi: 10.1002/ijc.29210
|
[5] |
NCCN guidelines for patients®: stomach cancer[EB/OL]. [2019-06-22]. https://www.nccn.org/patients/guidelines/content/PDF/stomach-patient.pdf.
|
[6] |
Efferth T, Li PCH, Konkimalla VS, et al. From traditional Chinese medicine to rational cancer therapy[J]. Trends Mol Med, 2007, 13(8): 353–361. doi: 10.1016/j.molmed.2007.07.001
|
[7] |
Wang W, Lin W, Wang Q, et al. The enhanced antitumor effect of combined triptolide and paclitaxel on pancreatic cancer cell lines[J]. J Clin Oncol, 2014, 32(S3): 335.
|
[8] |
Li X, Lu X, Xu H, et al. Paclitaxel/tetrandrine coloaded nanoparticles effectively promote the apoptosis of gastric cancer cells based on "oxidation therapy"[J]. Mol Pharmaceut, 2012, 9(2): 222–229. doi: 10.1021/mp2002736
|
[9] |
Li X, Yu N, Li J, et al. Novel "carrier-free" nanofiber codelivery systems with the synergistic antitumor effect of paclitaxel and tetrandrine through the enhancement of mitochondrial apoptosis[J]. ACS Appl Mater Interfaces, 2020, 12(9): 10096–10106. doi: 10.1021/acsami.9b17363
|
[10] |
Chen S, Dai Y, Zhao J, et al. A mechanistic overview of triptolide and celastrol, natural products from Tripterygium wilfordii Hook F[J]. Front Pharmacol, 2018, 9: 104. doi: 10.3389/fphar.2018.00104
|
[11] |
Roy V, LaPlant BR, Gross GG, et al. Phase II trial of weekly nab (nanoparticle albumin-bound)-paclitaxel (nab-paclitaxel) (Abraxane®) in combination with gemcitabine in patients with metastatic breast cancer (N0531)[J]. Ann Oncol, 2009, 20(3): 449–453. doi: 10.1093/annonc/mdn661
|
[12] |
Couvreur P. Nanoparticles in drug delivery: past, present and future[J]. Adv Drug Deliv Rev, 2013, 65(1): 21–23. doi: 10.1016/j.addr.2012.04.010
|
[13] |
Wang L, Jia E. Ovarian cancer targeted hyaluronic acid-based nanoparticle system for paclitaxel delivery to overcome drug resistance[J]. Drug Deliv, 2016, 23(5): 1810–1817. doi: 10.3109/10717544.2015.1101792
|
[14] |
Ahmed F, Pakunlu RI, Brannan A, et al. Biodegradable polymersomes loaded with both paclitaxel and doxorubicin permeate and shrink tumors, inducing apoptosis in proportion to accumulated drug[J]. J Control Release, 2006, 116(2): 150–158. doi: 10.1016/j.jconrel.2006.07.012
|
[15] |
Xu H, Lu X, Li J, et al. Superior antitumor effect of extremely high drug loading self-assembled paclitaxel nanofibers[J]. Int J Pharmaceut, 2017, 526(1-2): 217–224. doi: 10.1016/j.ijpharm.2017.04.081
|
[16] |
Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery[J]. ACS Nano, 2009, 3(1): 16–20. doi: 10.1021/nn900002m
|
[17] |
Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: recent developments and future prospects[J]. J Nanobiotechnol, 2018, 16(1): 71. doi: 10.1186/s12951-018-0392-8
|
[18] |
Hu C, Zhang L, Aryal S, et al. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform[J]. Proc Natl Acad Sci USA, 2011, 108(27): 10980–10985. doi: 10.1073/pnas.1106634108
|
[19] |
Kroll AV, Fang R, Zhang L. Biointerfacing and applications of cell membrane-coated nanoparticles[J]. Bioconjugate Chem, 2017, 28(1): 23–32. doi: 10.1021/acs.bioconjchem.6b00569
|
[20] |
Fang R, Kroll AV, Gao W, et al. Cell membrane coating nanotechnology[J]. Adv Mater, 2018, 30(23): 1706759. doi: 10.1002/adma.201706759
|
[21] |
Tang C, Wang C, Zhang Y, et al. Recognition, intervention, and monitoring of neutrophils in acute ischemic stroke[J]. Nano Lett, 2019, 19(7): 4470–4477. doi: 10.1021/acs.nanolett.9b01282
|
[22] |
Hu Q, Sun W, Wang C, et al. Recent advances of cocktail chemotherapy by combination drug delivery systems[J]. Adv Drug Deliv Rev, 2016, 98: 19–34. doi: 10.1016/j.addr.2015.10.022
|
[23] |
Oldenborg PA, Zheleznyak A, Fang YF, et al. Role of CD47 as a marker of self on red blood cells[J]. Science, 2000, 288(5473): 2051–2054. doi: 10.1126/science.288.5473.2051
|
[24] |
Li W, Ng JMK, Wong C, et al. Molecular alterations of cancer cell and tumour microenvironment in metastatic gastric cancer[J]. Oncogene, 2018, 37(36): 4903–4920. doi: 10.1038/s41388-018-0341-x
|
[25] |
Long Y, Lu Z, Mei L, et al. Enhanced melanoma-targeted therapy by "Fru-Blocked" phenyboronic acid-modified multiphase antimetastatic micellar nanoparticles[J]. Adv Sci, 2018, 5(11): 1800229. doi: 10.1002/advs.201800229
|
[26] |
Zhao H, Yang Z, Wang X, et al. Triptolide inhibits ovarian cancer cell invasion by repression of matrix metalloproteinase 7 and 19 and upregulation of E-cadherin[J]. Exp Mol Med, 2012, 44(11): 633–641. doi: 10.3858/emm.2012.44.11.072
|
[27] |
Sun B, Taha MS, Ramsey B, et al. Intraperitoneal chemotherapy of ovarian cancer by hydrogel depot of paclitaxel nanocrystals[J]. J Control Release, 2016, 235: 91–98. doi: 10.1016/j.jconrel.2016.05.056
|
[28] |
Liu Y, Ng Y, Toh MR, et al. Lipid-dendrimer hybrid nanosystem as a novel delivery system for paclitaxel to treat ovarian cancer[J]. J Control Release, 2015, 220: 438–446. doi: 10.1016/j.jconrel.2015.11.004
|
[29] |
Peng J, Chen J, Xie F, et al. Herceptin-conjugated paclitaxel loaded PCL-PEG worm-like nanocrystal micelles for the combinatorial treatment of HER2-positive breast cancer[J]. Biomaterials, 2019, 222: 119420. doi: 10.1016/j.biomaterials.2019.119420
|
[1] | Yuetong Chen, Chen Li, Yi Shi, Jiali Dai, Yixuan Meng, Shuwei Li, Cuiju Tang, Dongying Gu, Jinfei Chen. Identification of common genetic variants in KCNQ family genes associated with gastric cancer survival in a Chinese population[J]. The Journal of Biomedical Research, 2025, 39(1): 76-86. DOI: 10.7555/JBR.38.20240040 |
[2] | Mengfan Guo, Jingyuan Liu, Yujuan Zhang, Jingjing Gu, Junyi Xin, Mulong Du, Haiyan Chu, Meilin Wang, Hanting Liu, Zhengdong Zhang. Genetic variants in C1GALT1 are associated with gastric cancer risk by influencing immune infiltration[J]. The Journal of Biomedical Research, 2024, 38(4): 348-357. DOI: 10.7555/JBR.37.20230161 |
[3] | Yujuan Zhang, Kai Lu, Xu Wu, Hanting Liu, Junyi Xin, Xiaowei Wang, Weida Gong, Qinghong Zhao, Meilin Wang, Haiyan Chu, Mulong Du, Guoquan Tao, Zhengdong Zhang. Genetic variants in the Hedgehog signaling pathway genes are associated with gastric cancer risk in a Chinese Han population[J]. The Journal of Biomedical Research, 2022, 36(1): 22-31. DOI: 10.7555/JBR.35.20210091 |
[4] | Zhu Ping, Shan Xia, Liu Jinhui, Zhou Xin, Zhang Huo, Wang Tongshan, Wu Jianqing, Zhu Wei, Liu Ping. miR-3622b-5p regulates cisplatin resistance of human gastric cancer cell line by targeting BIRC5[J]. The Journal of Biomedical Research, 2019, 33(6): 382-390. DOI: 10.7555/JBR.33.20180078 |
[5] | Wang Jing, He Xuezhi, Lu Xiyi, Amin Karim Muhammad, Miao Dengshun, Zhang Erbao. A novel long non-coding RNA NFIA-AS1 is down-regulated in gastric cancer and inhibits proliferation of gastric cancer cells[J]. The Journal of Biomedical Research, 2019, 33(6): 371-381. DOI: 10.7555/JBR.33.20190015 |
[6] | Di Liu, Peng Xia, Dongmei Diao, Yao Cheng, Hao Zhang, Dawei Yuan, Chen Huang, Chengxue Dang. MiRNA-429 suppresses the growth of gastric cancer cells in vitro[J]. The Journal of Biomedical Research, 2012, 26(5): 389-393. DOI: 10.7555/JBR.26.20120029 |
[7] | Yao Liu, Qin Zhang, Chuanli Ren, Yanbing Ding, Guangfu Jin, Zhibin Hu, Yaochu Xu, Hongbing Shen. A germline variant N375S in MET and gastric cancer susceptibility in a Chinese population[J]. The Journal of Biomedical Research, 2012, 26(5): 315-318. DOI: 10.7555/JBR.26.20110087 |
[8] | Qi Zheng, Kejun Nan, Yu Yao. Gastric cancer presenting with solitary gigantic pelvic metastasis[J]. The Journal of Biomedical Research, 2012, 26(4): 303-306. DOI: 10.7555/JBR.26.20110056 |
[9] | Li Liu, Qi Chen, Rensheng Lai, Xiaobin Wu, Xiaoyu Wu, Fukun Liu, Guohua Xu, Yong Ji. Elevated expression of mature miR-21 and miR-155 in cancerous gastric tissues from Chinese patients with gastric cancer[J]. The Journal of Biomedical Research, 2010, 24(3): 187-197. |
[10] | Hua Huang, Juan Wu, Guangfu Jin, Hanze Zhang, Yanbing Ding, Zhaolai Hua, Yan Zhou, Yan Xue, Yan Lu, Zhibin Hu, Yaochu Xu, Hongbing Shen. A 5'-flanking region polymorphism in toll-like receptor 4 is associated with gastric cancer in a Chinese population[J]. The Journal of Biomedical Research, 2010, 24(2): 100-106. |