Citation: | Guan Jinxing, Wei Yongyue, Zhao Yang, Chen Feng. Modeling the transmission dynamics of COVID-19 epidemic: a systematic review[J]. The Journal of Biomedical Research, 2020, 34(6): 422-430. DOI: 10.7555/JBR.34.20200119 |
[1] |
Statement on the second meeting of the International Health Regulations (2005) Emergency Committee regarding the outbreak of novel coronavirus (2019-nCoV)[EB/OL]. [2020-01-30]. https://www.who.int/news-room/detail/30-01-2020-statement-on-the-second-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-outbreak-of-novel-coronavirus-(2019-ncov).
|
[2] |
Coronavirus disease (COVID-2019) situation reports[EB/OL]. [2020-01-21]. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports.
|
[3] |
Yousefpour A, Jahanshahi H, Bekiros S. Optimal policies for control of the novel coronavirus disease (COVID-19) outbreak[J]. Chaos, Solitons Fractals,2020, 136: 109883. doi: 10.1016/j.chaos.2020.109883
|
[4] |
Ma S, Xia YC. Mathematical understanding of infectious disease dynamics[M]. Singapore: World Scientific Publishing Company, 2008.
|
[5] |
Li RY, Pei S, Chen B, et al. Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2)[J]. Science,2020, 368(6490): 489–493. doi: 10.1126/science.abb3221
|
[6] |
Holmdahl I, Buckee C. Wrong but useful — what covid-19 epidemiologic models can and cannot tell us[J]. N Engl J Med,2020, 383(4): 303–305. doi: 10.1056/NEJMp2016822
|
[7] |
Park M, Cook AR, Lim JT, et al. A systematic review of COVID-19 epidemiology based on current evidence[J]. J Clin Med,2020, 9(4): 967. doi: 10.3390/jcm9040967
|
[8] |
Siegenfeld AF, Taleb NN, Bar-Yam Y. Opinion: what models can and cannot tell us about COVID-19[J]. Proc Natl Acad Sci U S A,2020, 117(28): 16092–16095. doi: 10.1073/pnas.2011542117
|
[9] |
Vynnycky E, White RG. An introduction to infectious disease modelling[M]. Oxford: Oxford University Press, 2010.
|
[10] |
Bai Y, Yao LS, Wei T, et al. Presumed asymptomatic carrier transmission of COVID-19[J]. JAMA,2020, 323(14): 1406–1407. doi: 10.1001/jama.2020.2565
|
[11] |
Rothe C, Schunk M, Sothmann P, et al. Transmission of 2019-nCoV infection from an asymptomatic contact in Germany[J]. N Engl J Med,2020, 382(10): 970–971. doi: 10.1056/NEJMc2001468
|
[12] |
Huang R, Xia J, Chen YX, et al. A family cluster of SARS-CoV-2 infection involving 11 patients in Nanjing, China[J]. Lancet Infect Dis,2020, 20(5): 534–535. doi: 10.1016/S1473-3099(20)30147-X
|
[13] |
Wei YY, Lu ZZ, Du ZC, et al. Fitting and forecasting the trend of COVID-19 by SEIR+CAQ dynamic model[J]. Chin J Epidemiol (in Chinese),2020, 41(4): 470–475. doi: 10.3760/cma.j.cn112338-20200216-00106
|
[14] |
Tuite AR, Fisman DN, Greer AL. Mathematical modelling of COVID-19 transmission and mitigation strategies in the population of Ontario, Canada[J]. CMAJ,2020, 192(19): E497–E505. doi: 10.1503/cmaj.200476
|
[15] |
Zhao C, Tepekule B, Criscuolo NG, et al. icumonitoring.ch: a platform for short-term forecasting of intensive care unit occupancy during the COVID-19 epidemic in Switzerland[J]. Swiss Med Wkly,2020, 150: w20277. doi: 10.4414/smw.2020.20277
|
[16] |
Kissler SM, Tedijanto C, Goldstein E, et al. Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period[J]. Science,2020, 368(6493): 860–868. doi: 10.1126/science.abb5793
|
[17] |
Ndaïrou F, Area I, Nieto JJ, et al. Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan[J]. Chaos,Solitons Fractals,2020, 135: 109846. doi: 10.1016/j.chaos.2020.109846
|
[18] |
Tang SY, Xiao YN, Peng ZH, et al. Prediction modeling with data fusion and prevention strategy analysis for the COVID-19 outbreak[J]. Chin J Epidemiol (in Chinese),2020, 41(4): 480–484. doi: 10.3760/cma.j.cn112338-20200216-00107
|
[19] |
Tang B, Scarabel F, Bragazzi NL, et al. De-escalation by reversing the escalation with a stronger synergistic package of contact tracing, quarantine, isolation and personal protection: feasibility of preventing a COVID-19 rebound in Ontario, Canada, as a case study[J]. Biology (Basel),2020, 9(5): 100. doi: 10.3390/biology9050100
|
[20] |
Wu P, Hao XX, Lau EHY, et al. Real-time tentative assessment of the epidemiological characteristics of novel coronavirus infections in Wuhan, China, as at 22 January 2020[J]. Euro Surveill,2020, 25(3). doi: 10.2807/1560-7917.es.2020.25.3.2000044
|
[21] |
Du ZW, Wang L, Cauchemez S, et al. Risk for transportation of coronavirus disease from wuhan to other cities in China[J]. Emerg Infect Dis,2020, 26(5): 1049–1052. doi: 10.3201/eid2605.200146
|
[22] |
Munster VJ, Koopmans M, Van Doremalen N, et al. A novel coronavirus emerging in China — key questions for impact assessment[J]. N Engl J Med,2020, 382(8): 692–694. doi: 10.1056/NEJMp2000929
|
[23] |
Wu JT, Leung K, Leung GM. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study[J]. Lancet,2020, 395(10225): 689–697. doi: 10.1016/S0140-6736(20)30260-9
|
[24] |
Lauer SA, Grantz KH, Bi QF, et al. The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application[J]. Ann Intern Med,2020, 172(9): 577–582. doi: 10.7326/M20-0504
|
[25] |
Wan KK, Chen J, Lu CM, et al. When will the battle against novel coronavirus end in Wuhan: a SEIR modeling analysis[J]. J Glob Health,2020, 10(1): 011002. doi: 10.7189/jogh.10.011002
|
[26] |
Cui QQ, Hu ZY, Li YK, et al. Dynamic variations of the COVID-19 disease at different quarantine strategies in Wuhan and mainland China[J]. J Infect Public Health,2020, 13(6): 849–855. doi: 10.1016/j.jiph.2020.05.014
|
[27] |
Lau EHY, Hsiung CA, Cowling BJ, et al. A comparative epidemiologic analysis of SARS in Hong Kong, Beijing and Taiwan[J]. BMC Infect Dis,2010, 10: 50. doi: 10.1186/1471-2334-10-50
|
[28] |
Yang ZF, Zeng ZQ, Wang K, et al. Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health interventions[J]. J Thorac Dis,2020, 12(3): 165–174. doi: 10.21037/jtd.2020.02.64
|
[29] |
Tian HY, Liu YH, Li YD, et al. An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in China[J]. Science,2020, 368(6491): 638–642. doi: 10.1126/science.abb6105
|
[30] |
Linka K, Peirlinck M, Sahli Costabal F, et al. Outbreak dynamics of COVID-19 in Europe and the effect of travel restrictions[J]. Comput Methods Biomech Biomed Engin,2020, 23(11): 710–717. doi: 10.1080/10255842.2020.1759560
|
[31] |
Roques L, Klein EK, Papaïx J, et al. Impact of lockdown on the epidemic dynamics of COVID-19 in France[J]. Front Med (Lausanne),2020, 7: 274. doi: 10.3389/fmed.2020.00274
|
[32] |
Gatto M, Bertuzzo E, Mari L, et al. Spread and dynamics of the COVID-19 epidemic in Italy: Effects of emergency containment measures[J]. Proc Natl Acad Sci U S A,2020, 117(19): 10484–10491. doi: 10.1073/pnas.2004978117
|
[33] |
Cao SL, Feng PH, Shi PP. Study on the epidemic development of COVID-19 in Hubei province by a modified SEIR model[J]. J Zhejiang Univ (Med Sci) (in Chinese),2020, 49(2): 178–184. doi: 10.3785/j.issn.1008-9292.2020.02.05
|
[34] |
Wei YY, Wei LM, Jiang Y, et al. Implementation of clinical diagnostic criteria and universal symptom survey contributed to lower magnitude and faster resolution of the COVID-19 epidemic in Wuhan[J]. Engineering (Beijing),2020. doi: 10.1016/j.eng.2020.04.008. [Epub ahead of print
|
[35] |
Wang HW, Wang ZZ, Dong YQ, et al. Phase-adjusted estimation of the number of Coronavirus Disease 2019 cases in Wuhan, China[J]. Cell Discov,2020, 6(1): 10. doi: 10.1038/s41421-020-0148-0
|
[36] |
Zu J, Li ML, Li ZF, et al. Transmission patterns of COVID-19 in the mainland of China and the efficacy of different control strategies: a data- and model-driven study[J]. Infect Dis Poverty,2020, 9(1): 83. doi: 10.1186/s40249-020-00709-z
|
[37] |
Dehning J, Zierenberg J, Spitzner FP, et al. Inferring change points in the spread of COVID-19 reveals the effectiveness of interventions[J]. Science,2020, 369(6500): eabb9789. doi: 10.1126/science.abb9789
|
[38] |
Wirawan IMA, Januraga PP. Forecasting COVID-19 transmission and healthcare capacity in Bali, Indonesia[J]. J Prev Med Public Health,2020, 53(3): 158–163. doi: 10.3961/jpmph.20.152
|
[39] |
Childs ML, Kain MP, Kirk D, et al. The impact of long-term non-pharmaceutical interventions on COVID-19 epidemic dynamics and control[EB/OL]. [2020-05-06]. https://www.medrxiv.org/content/10.1101/2020.05.03.20089078v1.
|
[40] |
Eikenberry SE, Mancuso M, Iboi E, et al. To mask or not to mask: modeling the potential for face mask use by the general public to curtail the COVID-19 pandemic[J]. Infect Dis Model,2020, 5: 293–308. doi: 10.1016/j.idm.2020.04.001
|
[41] |
Zhou WK, Wang AL, Xia F, et al. Effects of media reporting on mitigating spread of COVID-19 in the early phase of the outbreak[J]. Math Biosci Eng,2020, 17(3): 2693–2707. doi: 10.3934/mbe.2020147
|
[42] |
Weitz JS, Beckett SJ, Coenen AR, et al. Modeling shield immunity to reduce COVID-19 epidemic spread[J]. Nat Med,2020, 26(6): 849–854. doi: 10.1038/s41591-020-0895-3
|
[43] |
Hartig F, Calabrese JM, Reineking B, et al. Statistical inference for stochastic simulation models-theory and application[J]. Ecol Lett,2011, 14(8): 816–827. doi: 10.1111/j.1461-0248.2011.01640.x
|
[44] |
Reis RF, De Melo Quintela B, De Oliveira Campos J, et al. Characterization of the COVID-19 pandemic and the impact of uncertainties, mitigation strategies, and underreporting of cases in South Korea, Italy, and Brazil[J]. Chaos, Solitons Fractals,2020, 136: 109888. doi: 10.1016/j.chaos.2020.109888
|
[45] |
Kennedy DM, Zambrano GJ, Wang YY, et al. Modeling the effects of intervention strategies on COVID-19 transmission dynamics[J]. J Clin Virol,2020, 128: 104440. doi: 10.1016/j.jcv.2020.104440
|
[46] |
Tang B, Wang X, Li Q, et al. Estimation of the transmission risk of the 2019-nCoV and its implication for public health interventions[J]. J Clin Med,2020, 9(2): 462. doi: 10.3390/jcm9020462
|
1. | Zhao Z, Zhou Y, Guan J, et al. The relationship between compartment models and their stochastic counterparts: A comparative study with examples of the COVID-19 epidemic modeling. J Biomed Res, 2024, 38(2): 175-188. DOI:10.7555/JBR.37.20230137 |
2. | Shuttleworth JG, Lei CL, Whittaker DG, et al. Empirical Quantification of Predictive Uncertainty Due to Model Discrepancy by Training with an Ensemble of Experimental Designs: An Application to Ion Channel Kinetics. Bull Math Biol, 2023, 86(1): 2. DOI:10.1007/s11538-023-01224-6 |
3. | Hu C. Emergency Protective Measures and Strategies of COVID-19: From Lifestyle to Traditional Chinese Medicine. Clin Complement Med Pharmacol, 2023, 3(3): 100089. DOI:10.1016/j.ccmp.2023.100089 |
4. | Olayiwola MO, Alaje AI, Olarewaju AY, et al. A caputo fractional order epidemic model for evaluating the effectiveness of high-risk quarantine and vaccination strategies on the spread of COVID-19. Healthc Anal (N Y), 2023, 3: 100179. DOI:10.1016/j.health.2023.100179 |
5. | Noroozi-Ghaleini E, Shaibani MJ. Investigating the effect of vaccinated population on the COVID-19 prediction using FA and ABC-based feed-forward neural networks. Heliyon, 2023, 9(2): e13672. DOI:10.1016/j.heliyon.2023.e13672 |
6. | Bekker R, Uit Het Broek M, Koole G. Modeling COVID-19 hospital admissions and occupancy in the Netherlands. Eur J Oper Res, 2023, 304(1): 207-218. DOI:10.1016/j.ejor.2021.12.044 |
7. | Najem S, Monni S, Hatoum R, et al. A framework for reconstructing transmission networks in infectious diseases. Appl Netw Sci, 2022, 7(1): 85. DOI:10.1007/s41109-022-00525-4 |
8. | McAndrew T, Codi A, Cambeiro J, et al. Chimeric forecasting: combining probabilistic predictions from computational models and human judgment. BMC Infect Dis, 2022, 22(1): 833. DOI:10.1186/s12879-022-07794-5 |
9. | Zhang W, Liu S, Osgood N, et al. Using simulation modelling and systems science to help contain COVID-19: A systematic review. Syst Res Behav Sci, 2022. DOI:10.1002/sres.2897. Online ahead of print |
10. | Nixon K, Jindal S, Parker F, et al. An evaluation of prospective COVID-19 modelling studies in the USA: from data to science translation. Lancet Digit Health, 2022, 4(10): e738-e747. DOI:10.1016/S2589-7500(22)00148-0 |
11. | Zhang P, Feng K, Gong Y, et al. Usage of Compartmental Models in Predicting COVID-19 Outbreaks. AAPS J, 2022, 24(5): 98. DOI:10.1208/s12248-022-00743-9 |
12. | Guan J, Zhao Y, Wei Y, et al. Transmission dynamics model and the coronavirus disease 2019 epidemic: applications and challenges. Med Rev (2021), 2022, 2(1): 89-109. DOI:10.1515/mr-2021-0022 |
13. | Rizzo S, Catanese C, Puligheddu C, et al. CT evaluation of lung infiltrates in the two months preceding the Coronavirus disease 19 pandemic in Canton Ticino (Switzerland): were there suspicious cases before the official first case?. Radiol Med, 2022, 127(4): 360-368. DOI:10.1007/s11547-022-01466-9 |
14. | Cocucci TJ, Pulido M, Aparicio JP, et al. Inference in epidemiological agent-based models using ensemble-based data assimilation. PLoS One, 2022, 17(3): e0264892. DOI:10.1371/journal.pone.0264892 |
15. | Yu S, Cui S, Rui J, et al. Epidemiological Characteristics and Transmissibility for SARS-CoV-2 of Population Level and Cluster Level in a Chinese City. Front Public Health, 2022, 9: 799536. DOI:10.3389/fpubh.2021.799536 |
16. | Wang H, Moore JM, Small M, et al. Epidemic dynamics on higher-dimensional small world networks. Appl Math Comput, 2022, 421: 126911. DOI:10.1016/j.amc.2021.126911 |
17. | Wei Y, Sha F, Zhao Y, et al. Better modelling of infectious diseases: lessons from covid-19 in China. BMJ, 2021, 375: n2365. DOI:10.1136/bmj.n2365 |
18. | Safari A, Hosseini R, Mazinani M. A novel deep interval type-2 fuzzy LSTM (DIT2FLSTM) model applied to COVID-19 pandemic time-series prediction. J Biomed Inform, 2021, 123: 103920. DOI:10.1016/j.jbi.2021.103920 |
19. | Duarte P, Riveros-Perez E. Understanding the cycles of COVID-19 incidence: Principal Component Analysis and interaction of biological and socio-economic factors. Ann Med Surg (Lond), 2021, 66: 102437. DOI:10.1016/j.amsu.2021.102437 |
20. | Liu J, Zhou Y, Ye C, et al. The spatial transmission of SARS-CoV-2 in China under the prevention and control measures at the early outbreak. Arch Public Health, 2021, 79(1): 8. DOI:10.1186/s13690-021-00529-z |