4.6

CiteScore

2.2

Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Guan Jinxing, Wei Yongyue, Zhao Yang, Chen Feng. Modeling the transmission dynamics of COVID-19 epidemic: a systematic review[J]. The Journal of Biomedical Research, 2020, 34(6): 422-430. DOI: 10.7555/JBR.34.20200119
Citation: Guan Jinxing, Wei Yongyue, Zhao Yang, Chen Feng. Modeling the transmission dynamics of COVID-19 epidemic: a systematic review[J]. The Journal of Biomedical Research, 2020, 34(6): 422-430. DOI: 10.7555/JBR.34.20200119

Modeling the transmission dynamics of COVID-19 epidemic: a systematic review

More Information
  • Corresponding author:

    Feng Chen, Department of Epidemiology and Biostatistics, School of Public Health, Center for Global Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, China. Tel: +86-25-86868436, E-mail: fengchen@njmu.edu.cn

  • Received Date: July 22, 2020
  • Revised Date: September 16, 2020
  • Accepted Date: September 24, 2020
  • Available Online: October 29, 2020
  • The outbreak and rapid spread of COVID-19 has become a public health emergency of international concern. A number of studies have used modeling techniques and developed dynamic models to estimate the epidemiological parameters, explore and project the trends of the COVID-19, and assess the effects of intervention or control measures. We identified 63 studies and summarized the three aspects of these studies: epidemiological parameters estimation, trend prediction, and control measure evaluation. Despite the discrepancy between the predictions and the actuals, the dynamic model has made great contributions in the above three aspects. The most important role of dynamic models is exploring possibilities rather than making strong predictions about longer-term disease dynamics.
  • [1]
    Statement on the second meeting of the International Health Regulations (2005) Emergency Committee regarding the outbreak of novel coronavirus (2019-nCoV)[EB/OL]. [2020-01-30]. https://www.who.int/news-room/detail/30-01-2020-statement-on-the-second-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-outbreak-of-novel-coronavirus-(2019-ncov).
    [2]
    Coronavirus disease (COVID-2019) situation reports[EB/OL]. [2020-01-21]. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports.
    [3]
    Yousefpour A, Jahanshahi H, Bekiros S. Optimal policies for control of the novel coronavirus disease (COVID-19) outbreak[J]. Chaos, Solitons Fractals,2020, 136: 109883. doi: 10.1016/j.chaos.2020.109883
    [4]
    Ma S, Xia YC. Mathematical understanding of infectious disease dynamics[M]. Singapore: World Scientific Publishing Company, 2008.
    [5]
    Li RY, Pei S, Chen B, et al. Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2)[J]. Science,2020, 368(6490): 489–493. doi: 10.1126/science.abb3221
    [6]
    Holmdahl I, Buckee C. Wrong but useful — what covid-19 epidemiologic models can and cannot tell us[J]. N Engl J Med,2020, 383(4): 303–305. doi: 10.1056/NEJMp2016822
    [7]
    Park M, Cook AR, Lim JT, et al. A systematic review of COVID-19 epidemiology based on current evidence[J]. J Clin Med,2020, 9(4): 967. doi: 10.3390/jcm9040967
    [8]
    Siegenfeld AF, Taleb NN, Bar-Yam Y. Opinion: what models can and cannot tell us about COVID-19[J]. Proc Natl Acad Sci U S A,2020, 117(28): 16092–16095. doi: 10.1073/pnas.2011542117
    [9]
    Vynnycky E, White RG. An introduction to infectious disease modelling[M]. Oxford: Oxford University Press, 2010.
    [10]
    Bai Y, Yao LS, Wei T, et al. Presumed asymptomatic carrier transmission of COVID-19[J]. JAMA,2020, 323(14): 1406–1407. doi: 10.1001/jama.2020.2565
    [11]
    Rothe C, Schunk M, Sothmann P, et al. Transmission of 2019-nCoV infection from an asymptomatic contact in Germany[J]. N Engl J Med,2020, 382(10): 970–971. doi: 10.1056/NEJMc2001468
    [12]
    Huang R, Xia J, Chen YX, et al. A family cluster of SARS-CoV-2 infection involving 11 patients in Nanjing, China[J]. Lancet Infect Dis,2020, 20(5): 534–535. doi: 10.1016/S1473-3099(20)30147-X
    [13]
    Wei YY, Lu ZZ, Du ZC, et al. Fitting and forecasting the trend of COVID-19 by SEIR+CAQ dynamic model[J]. Chin J Epidemiol (in Chinese),2020, 41(4): 470–475. doi: 10.3760/cma.j.cn112338-20200216-00106
    [14]
    Tuite AR, Fisman DN, Greer AL. Mathematical modelling of COVID-19 transmission and mitigation strategies in the population of Ontario, Canada[J]. CMAJ,2020, 192(19): E497–E505. doi: 10.1503/cmaj.200476
    [15]
    Zhao C, Tepekule B, Criscuolo NG, et al. icumonitoring.ch: a platform for short-term forecasting of intensive care unit occupancy during the COVID-19 epidemic in Switzerland[J]. Swiss Med Wkly,2020, 150: w20277. doi: 10.4414/smw.2020.20277
    [16]
    Kissler SM, Tedijanto C, Goldstein E, et al. Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period[J]. Science,2020, 368(6493): 860–868. doi: 10.1126/science.abb5793
    [17]
    Ndaïrou F, Area I, Nieto JJ, et al. Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan[J]. Chaos,Solitons Fractals,2020, 135: 109846. doi: 10.1016/j.chaos.2020.109846
    [18]
    Tang SY, Xiao YN, Peng ZH, et al. Prediction modeling with data fusion and prevention strategy analysis for the COVID-19 outbreak[J]. Chin J Epidemiol (in Chinese),2020, 41(4): 480–484. doi: 10.3760/cma.j.cn112338-20200216-00107
    [19]
    Tang B, Scarabel F, Bragazzi NL, et al. De-escalation by reversing the escalation with a stronger synergistic package of contact tracing, quarantine, isolation and personal protection: feasibility of preventing a COVID-19 rebound in Ontario, Canada, as a case study[J]. Biology (Basel),2020, 9(5): 100. doi: 10.3390/biology9050100
    [20]
    Wu P, Hao XX, Lau EHY, et al. Real-time tentative assessment of the epidemiological characteristics of novel coronavirus infections in Wuhan, China, as at 22 January 2020[J]. Euro Surveill,2020, 25(3). doi: 10.2807/1560-7917.es.2020.25.3.2000044
    [21]
    Du ZW, Wang L, Cauchemez S, et al. Risk for transportation of coronavirus disease from wuhan to other cities in China[J]. Emerg Infect Dis,2020, 26(5): 1049–1052. doi: 10.3201/eid2605.200146
    [22]
    Munster VJ, Koopmans M, Van Doremalen N, et al. A novel coronavirus emerging in China — key questions for impact assessment[J]. N Engl J Med,2020, 382(8): 692–694. doi: 10.1056/NEJMp2000929
    [23]
    Wu JT, Leung K, Leung GM. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study[J]. Lancet,2020, 395(10225): 689–697. doi: 10.1016/S0140-6736(20)30260-9
    [24]
    Lauer SA, Grantz KH, Bi QF, et al. The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application[J]. Ann Intern Med,2020, 172(9): 577–582. doi: 10.7326/M20-0504
    [25]
    Wan KK, Chen J, Lu CM, et al. When will the battle against novel coronavirus end in Wuhan: a SEIR modeling analysis[J]. J Glob Health,2020, 10(1): 011002. doi: 10.7189/jogh.10.011002
    [26]
    Cui QQ, Hu ZY, Li YK, et al. Dynamic variations of the COVID-19 disease at different quarantine strategies in Wuhan and mainland China[J]. J Infect Public Health,2020, 13(6): 849–855. doi: 10.1016/j.jiph.2020.05.014
    [27]
    Lau EHY, Hsiung CA, Cowling BJ, et al. A comparative epidemiologic analysis of SARS in Hong Kong, Beijing and Taiwan[J]. BMC Infect Dis,2010, 10: 50. doi: 10.1186/1471-2334-10-50
    [28]
    Yang ZF, Zeng ZQ, Wang K, et al. Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health interventions[J]. J Thorac Dis,2020, 12(3): 165–174. doi: 10.21037/jtd.2020.02.64
    [29]
    Tian HY, Liu YH, Li YD, et al. An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in China[J]. Science,2020, 368(6491): 638–642. doi: 10.1126/science.abb6105
    [30]
    Linka K, Peirlinck M, Sahli Costabal F, et al. Outbreak dynamics of COVID-19 in Europe and the effect of travel restrictions[J]. Comput Methods Biomech Biomed Engin,2020, 23(11): 710–717. doi: 10.1080/10255842.2020.1759560
    [31]
    Roques L, Klein EK, Papaïx J, et al. Impact of lockdown on the epidemic dynamics of COVID-19 in France[J]. Front Med (Lausanne),2020, 7: 274. doi: 10.3389/fmed.2020.00274
    [32]
    Gatto M, Bertuzzo E, Mari L, et al. Spread and dynamics of the COVID-19 epidemic in Italy: Effects of emergency containment measures[J]. Proc Natl Acad Sci U S A,2020, 117(19): 10484–10491. doi: 10.1073/pnas.2004978117
    [33]
    Cao SL, Feng PH, Shi PP. Study on the epidemic development of COVID-19 in Hubei province by a modified SEIR model[J]. J Zhejiang Univ (Med Sci) (in Chinese),2020, 49(2): 178–184. doi: 10.3785/j.issn.1008-9292.2020.02.05
    [34]
    Wei YY, Wei LM, Jiang Y, et al. Implementation of clinical diagnostic criteria and universal symptom survey contributed to lower magnitude and faster resolution of the COVID-19 epidemic in Wuhan[J]. Engineering (Beijing),2020. doi: 10.1016/j.eng.2020.04.008. [Epub ahead of print
    [35]
    Wang HW, Wang ZZ, Dong YQ, et al. Phase-adjusted estimation of the number of Coronavirus Disease 2019 cases in Wuhan, China[J]. Cell Discov,2020, 6(1): 10. doi: 10.1038/s41421-020-0148-0
    [36]
    Zu J, Li ML, Li ZF, et al. Transmission patterns of COVID-19 in the mainland of China and the efficacy of different control strategies: a data- and model-driven study[J]. Infect Dis Poverty,2020, 9(1): 83. doi: 10.1186/s40249-020-00709-z
    [37]
    Dehning J, Zierenberg J, Spitzner FP, et al. Inferring change points in the spread of COVID-19 reveals the effectiveness of interventions[J]. Science,2020, 369(6500): eabb9789. doi: 10.1126/science.abb9789
    [38]
    Wirawan IMA, Januraga PP. Forecasting COVID-19 transmission and healthcare capacity in Bali, Indonesia[J]. J Prev Med Public Health,2020, 53(3): 158–163. doi: 10.3961/jpmph.20.152
    [39]
    Childs ML, Kain MP, Kirk D, et al. The impact of long-term non-pharmaceutical interventions on COVID-19 epidemic dynamics and control[EB/OL]. [2020-05-06]. https://www.medrxiv.org/content/10.1101/2020.05.03.20089078v1.
    [40]
    Eikenberry SE, Mancuso M, Iboi E, et al. To mask or not to mask: modeling the potential for face mask use by the general public to curtail the COVID-19 pandemic[J]. Infect Dis Model,2020, 5: 293–308. doi: 10.1016/j.idm.2020.04.001
    [41]
    Zhou WK, Wang AL, Xia F, et al. Effects of media reporting on mitigating spread of COVID-19 in the early phase of the outbreak[J]. Math Biosci Eng,2020, 17(3): 2693–2707. doi: 10.3934/mbe.2020147
    [42]
    Weitz JS, Beckett SJ, Coenen AR, et al. Modeling shield immunity to reduce COVID-19 epidemic spread[J]. Nat Med,2020, 26(6): 849–854. doi: 10.1038/s41591-020-0895-3
    [43]
    Hartig F, Calabrese JM, Reineking B, et al. Statistical inference for stochastic simulation models-theory and application[J]. Ecol Lett,2011, 14(8): 816–827. doi: 10.1111/j.1461-0248.2011.01640.x
    [44]
    Reis RF, De Melo Quintela B, De Oliveira Campos J, et al. Characterization of the COVID-19 pandemic and the impact of uncertainties, mitigation strategies, and underreporting of cases in South Korea, Italy, and Brazil[J]. Chaos, Solitons Fractals,2020, 136: 109888. doi: 10.1016/j.chaos.2020.109888
    [45]
    Kennedy DM, Zambrano GJ, Wang YY, et al. Modeling the effects of intervention strategies on COVID-19 transmission dynamics[J]. J Clin Virol,2020, 128: 104440. doi: 10.1016/j.jcv.2020.104440
    [46]
    Tang B, Wang X, Li Q, et al. Estimation of the transmission risk of the 2019-nCoV and its implication for public health interventions[J]. J Clin Med,2020, 9(2): 462. doi: 10.3390/jcm9020462
  • Related Articles

    [1]Ziyu Zhao, Yi Zhou, Jinxing Guan, Yan Yan, Jing Zhao, Zhihang Peng, Feng Chen, Yang Zhao, Fang Shao. The relationship between compartment models and their stochastic counterparts: A comparative study with examples of the COVID-19 epidemic modeling[J]. The Journal of Biomedical Research, 2024, 38(2): 175-188. DOI: 10.7555/JBR.37.20230137
    [2]Liuhua Zhou, Jiateng Sun, Tongtong Yang, Sibo Wang, Tiankai Shan, Lingfeng Gu, Jiawen Chen, Tianwen Wei, Di Zhao, Chong Du, Yulin Bao, Hao Wang, Xiaohu Lu, Haoliang Sun, Meng Lv, Di Yang, Liansheng Wang. Improved methodology for efficient establishment of the myocardial ischemia-reperfusion model in pigs through the median thoracic incision[J]. The Journal of Biomedical Research, 2023, 37(4): 302-312. DOI: 10.7555/JBR.36.20220189
    [3]Zheyue Wang, Qi Tang, Bende Liu, Wenqing Zhang, Yufeng Chen, Ningfei Ji, Yan Peng, Xiaohui Yang, Daixun Cui, Weiyu Kong, Xiaojun Tang, Tingting Yang, Mingshun Zhang, Xinxia Chang, Jin Zhu, Mao Huang, Zhenqing Feng. A SARS-CoV-2 neutralizing antibody discovery by single cell sequencing and molecular modeling[J]. The Journal of Biomedical Research, 2023, 37(3): 166-178. DOI: 10.7555/JBR.36.20220221
    [4]Desaulniers Amy T., Cederberg Rebecca A., Carreiro Elizabeth P., Gurumurthy Channabasavaiah B., White Brett R.. A transgenic pig model expressing a CMV-ZsGreen1 reporter across an extensive array of tissues[J]. The Journal of Biomedical Research, 2021, 35(2): 163-173. DOI: 10.7555/JBR.34.20200111
    [5]Pan Wei, Miyazaki Yasuo, Tsumura Hideyo, Miyazaki Emi, Yang Wei. Identification of county-level health factors associated with COVID-19 mortality in the United States[J]. The Journal of Biomedical Research, 2020, 34(6): 437-445. DOI: 10.7555/JBR.34.20200129
    [6]Wang Le Yi, McKelvey George M., Wang Hong. Multi-outcome predictive modelling of anesthesia patients[J]. The Journal of Biomedical Research, 2019, 33(6): 430-434. DOI: 10.7555/JBR.33.20180088
    [7]Jiawei Liao, Wei Huang, George Liu. Animal models of coronary heart disease[J]. The Journal of Biomedical Research, 2017, 31(1): 3-10. DOI: 10.7555/JBR.30.20150051
    [8]Qin Wei, Yeping Bian, Fuchao Yu, Qiang Zhang, Guanghao Zhang, Yang Li, Songsong Song, Xiaomei Ren, Jiayi Tong. Chronic intermittent hypoxia induces cardiac inflammation and dysfunction in a rat obstructive sleep apnea model[J]. The Journal of Biomedical Research, 2016, 30(6): 490-495. DOI: 10.7555/JBR.30.20160110
    [9]Mei Ju, Kun Chen, Baozhu Chang, Heng Gu. UVA1 irradiation inhibits fibroblast proliferation and alleviates pathological changes of scleroderma in a mouse model[J]. The Journal of Biomedical Research, 2012, 26(2): 135-142. DOI: 10.1016/S1674-8301(12)60023-2
    [10]Mukta Rani, Manas R. Dikhit, Ganesh C Sahoo, Pradeep Das. Comparative domain modeling of human EGF-like module EMR2 and study of interaction of the fourth domain of EGF with chondroitin 4-sulphate[J]. The Journal of Biomedical Research, 2011, 25(2): 100-110. DOI: 10.1016/S1674-8301(11)60013-4
  • Other Related Supplements

  • Cited by

    Periodical cited type(20)

    1. Zhao Z, Zhou Y, Guan J, et al. The relationship between compartment models and their stochastic counterparts: A comparative study with examples of the COVID-19 epidemic modeling. J Biomed Res, 2024, 38(2): 175-188. DOI:10.7555/JBR.37.20230137
    2. Shuttleworth JG, Lei CL, Whittaker DG, et al. Empirical Quantification of Predictive Uncertainty Due to Model Discrepancy by Training with an Ensemble of Experimental Designs: An Application to Ion Channel Kinetics. Bull Math Biol, 2023, 86(1): 2. DOI:10.1007/s11538-023-01224-6
    3. Hu C. Emergency Protective Measures and Strategies of COVID-19: From Lifestyle to Traditional Chinese Medicine. Clin Complement Med Pharmacol, 2023, 3(3): 100089. DOI:10.1016/j.ccmp.2023.100089
    4. Olayiwola MO, Alaje AI, Olarewaju AY, et al. A caputo fractional order epidemic model for evaluating the effectiveness of high-risk quarantine and vaccination strategies on the spread of COVID-19. Healthc Anal (N Y), 2023, 3: 100179. DOI:10.1016/j.health.2023.100179
    5. Noroozi-Ghaleini E, Shaibani MJ. Investigating the effect of vaccinated population on the COVID-19 prediction using FA and ABC-based feed-forward neural networks. Heliyon, 2023, 9(2): e13672. DOI:10.1016/j.heliyon.2023.e13672
    6. Bekker R, Uit Het Broek M, Koole G. Modeling COVID-19 hospital admissions and occupancy in the Netherlands. Eur J Oper Res, 2023, 304(1): 207-218. DOI:10.1016/j.ejor.2021.12.044
    7. Najem S, Monni S, Hatoum R, et al. A framework for reconstructing transmission networks in infectious diseases. Appl Netw Sci, 2022, 7(1): 85. DOI:10.1007/s41109-022-00525-4
    8. McAndrew T, Codi A, Cambeiro J, et al. Chimeric forecasting: combining probabilistic predictions from computational models and human judgment. BMC Infect Dis, 2022, 22(1): 833. DOI:10.1186/s12879-022-07794-5
    9. Zhang W, Liu S, Osgood N, et al. Using simulation modelling and systems science to help contain COVID-19: A systematic review. Syst Res Behav Sci, 2022. DOI:10.1002/sres.2897. Online ahead of print
    10. Nixon K, Jindal S, Parker F, et al. An evaluation of prospective COVID-19 modelling studies in the USA: from data to science translation. Lancet Digit Health, 2022, 4(10): e738-e747. DOI:10.1016/S2589-7500(22)00148-0
    11. Zhang P, Feng K, Gong Y, et al. Usage of Compartmental Models in Predicting COVID-19 Outbreaks. AAPS J, 2022, 24(5): 98. DOI:10.1208/s12248-022-00743-9
    12. Guan J, Zhao Y, Wei Y, et al. Transmission dynamics model and the coronavirus disease 2019 epidemic: applications and challenges. Med Rev (2021), 2022, 2(1): 89-109. DOI:10.1515/mr-2021-0022
    13. Rizzo S, Catanese C, Puligheddu C, et al. CT evaluation of lung infiltrates in the two months preceding the Coronavirus disease 19 pandemic in Canton Ticino (Switzerland): were there suspicious cases before the official first case?. Radiol Med, 2022, 127(4): 360-368. DOI:10.1007/s11547-022-01466-9
    14. Cocucci TJ, Pulido M, Aparicio JP, et al. Inference in epidemiological agent-based models using ensemble-based data assimilation. PLoS One, 2022, 17(3): e0264892. DOI:10.1371/journal.pone.0264892
    15. Yu S, Cui S, Rui J, et al. Epidemiological Characteristics and Transmissibility for SARS-CoV-2 of Population Level and Cluster Level in a Chinese City. Front Public Health, 2022, 9: 799536. DOI:10.3389/fpubh.2021.799536
    16. Wang H, Moore JM, Small M, et al. Epidemic dynamics on higher-dimensional small world networks. Appl Math Comput, 2022, 421: 126911. DOI:10.1016/j.amc.2021.126911
    17. Wei Y, Sha F, Zhao Y, et al. Better modelling of infectious diseases: lessons from covid-19 in China. BMJ, 2021, 375: n2365. DOI:10.1136/bmj.n2365
    18. Safari A, Hosseini R, Mazinani M. A novel deep interval type-2 fuzzy LSTM (DIT2FLSTM) model applied to COVID-19 pandemic time-series prediction. J Biomed Inform, 2021, 123: 103920. DOI:10.1016/j.jbi.2021.103920
    19. Duarte P, Riveros-Perez E. Understanding the cycles of COVID-19 incidence: Principal Component Analysis and interaction of biological and socio-economic factors. Ann Med Surg (Lond), 2021, 66: 102437. DOI:10.1016/j.amsu.2021.102437
    20. Liu J, Zhou Y, Ye C, et al. The spatial transmission of SARS-CoV-2 in China under the prevention and control measures at the early outbreak. Arch Public Health, 2021, 79(1): 8. DOI:10.1186/s13690-021-00529-z

    Other cited types(0)

Catalog

    Article Metrics

    Article views (1933) PDF downloads (230) Cited by(20)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return