4.6

CiteScore

2.2

Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Michael J Russell, Theodore Goodman, Ronald Pierson, Shane Shepherd, Qiang Wang, Bennett Groshong, David F Wiley. Individual differences in transcranial electrical stimulation current density[J]. The Journal of Biomedical Research, 2013, 27(6): 495-508. DOI: 10.7555/JBR.27.20130074
Citation: Michael J Russell, Theodore Goodman, Ronald Pierson, Shane Shepherd, Qiang Wang, Bennett Groshong, David F Wiley. Individual differences in transcranial electrical stimulation current density[J]. The Journal of Biomedical Research, 2013, 27(6): 495-508. DOI: 10.7555/JBR.27.20130074

Individual differences in transcranial electrical stimulation current density

More Information
  • Received Date: May 07, 2013
  • Transcranial electrical stimulation (TCES) is effective in treating many conditions, but it has not been possible to accurately forecast current density within the complex anatomy of a given subject's head. We sought to predict and verify TCES current densities and determine the variability of these current distributions in patient-specific models based on magnetic resonance imaging (MRI) data. Two experiments were performed. The first experiment estimated conductivity from MRIs and compared the current density results against actual measurements from the scalp surface of 3 subjects. In the second experiment, virtual electrodes were placed on the scalps of 18 subjects to model simulated current densities with 2 mA of virtually applied stimulation. This procedure was repeated for 4 electrode locations. Current densities were then calculated for 75 brain regions. Comparison of modeled and measured external current in experiment 1 yielded a correlation of r = .93. In experiment 2, modeled individual differences were greatest near the electrodes (ten-fold differences were common), but simulated current was found in all regions of the brain. Sites that were distant from the electrodes (e.g. hypothalamus) typically showed two-fold individual differences. MRI-based modeling can effectively predict current densities in individual brains. Significant variation occurs between subjects with the same applied electrode configuration. Individualized MRI-based modeling should be considered in place of the 10-20 system when accurate TCES is needed.
  • Related Articles

    [1]Xiaolong Zheng, Wei Wang. Astrocyte transplantation for repairing the injured spinal cord[J]. The Journal of Biomedical Research, 2022, 36(5): 312-320. DOI: 10.7555/JBR.36.20220012
    [2]Marta Obara-Michlewska. The contribution of astrocytes to obesity-associated metabolic disturbances[J]. The Journal of Biomedical Research, 2022, 36(5): 299-311. DOI: 10.7555/JBR.36.20200020
    [3]Tiwari-Heckler Shilpa, Jiang Z. Gordon, Popov Yury, J. Mukamal Kenneth. Daily high-dose aspirin does not lower APRI in the Aspirin-Myocardial Infarction Study[J]. The Journal of Biomedical Research, 2020, 34(2): 139-142. DOI: 10.7555/JBR.33.20190041
    [4]Huan Liu, Shijiang Zhang, Yongfeng Shao, Xiaohu Lu, Weidong Gu, Buqing Ni, Qun Gu, Junjie Du. Biomechanical characterization of a novel ring connector for sutureless aortic anastomosis[J]. The Journal of Biomedical Research, 2018, 32(6): 454-460. DOI: 10.7555/JBR.31.20170011
    [5]Minbo Zang, Qiao Zhou, Yunfei Zhu, Mingxi Liu, Zuomin Zhou. Effects of chemotherapeutic agent bendamustine for nonhodgkin lymphoma on spermatogenesis in mice[J]. The Journal of Biomedical Research, 2018, 32(6): 442-453. DOI: 10.7555/JBR.31.20170023
    [6]Huanqiang Wang, Congying Yang, Siyuan Wang, Tian Wang, Jingling Han, Kai Wei, Fucun Liu, Jida Xu, Xianzhen Peng, Jianming Wang. Cell-free plasma hypermethylated CASZ1, CDH13 and ING2 are promising biomarkers of esophageal cancer[J]. The Journal of Biomedical Research, 2018, 32(6): 424-433. DOI: 10.7555/JBR.32.20170065
    [7]Fengzhen Wang, Mingwan Zhang, Dongsheng Zhang, Yuan Huang, Li Chen, Sunmin Jiang, Kun Shi, Rui Li. Preparation, optimization, and characterization of chitosancoated solid lipid nanoparticles for ocular drug delivery[J]. The Journal of Biomedical Research, 2018, 32(6): 411-423. DOI: 10.7555/JBR.32.20160170
    [8]Anna Karolina Zuk, Xuesong Wen, Stephen Dilworth, Dong Li, Lucy Ghali. Modeling and validating three dimensional human normal cervix and cervical cancer tissues in vitro[J]. The Journal of Biomedical Research, 2017, 31(3): 240-247. DOI: 10.7555/JBR.31.20160150
    [9]Shengfa Ni, Lingxiang Liu, Yongqian Shu. Sequential transcatheter arterial chemoembolization, three-dimensional conformal radiotherapy, and high-intensity focused ultrasound treatment for unresectable hepatocellular carcinoma patients[J]. The Journal of Biomedical Research, 2012, 26(4): 260-267. DOI: 10.7555/JBR.26.20120016
    [10]Amit Kumar Sharma, Rajeev Kumar Tiwari, Mulayam Singh Gaur. Three dimensional structure prediction and proton nuclear magnetic resonance analysis of toxic pesticides in human blood plasma[J]. The Journal of Biomedical Research, 2012, 26(3): 170-184. DOI: 10.7555/JBR.26.20110132
  • Cited by

    Periodical cited type(1)

    1. Atabati H, Raoofi A, Amini A, et al. Evaluating HER2 Gene Amplification Using Chromogenic In Situ Hybridization (CISH) Method In Comparison To Immunohistochemistry Method in Breast Carcinoma. Open Access Maced J Med Sci, 2018, 6(11): 1977-1981. DOI:10.3889/oamjms.2018.455

    Other cited types(0)

Catalog

    Article Metrics

    Article views (4407) PDF downloads (929) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return