4.6

CiteScore

2.2

Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Jing Gao, Fumihiko Nakamura. Intermediate filaments and their associated molecules[J]. The Journal of Biomedical Research. DOI: 10.7555/JBR.38.20240193
Citation: Jing Gao, Fumihiko Nakamura. Intermediate filaments and their associated molecules[J]. The Journal of Biomedical Research. DOI: 10.7555/JBR.38.20240193

Unproofed Manuscript: The manuscript has been professionally copyedited and typeset to confirm the JBR’s formatting, but still needs proofreading by the corresponding author to ensure accuracy and correct any potential errors introduced during the editing process. It will be replaced by the online publication version.

Intermediate filaments and their associated molecules

More Information
  • Corresponding author:

    Fumihiko Nakamura, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China. E-mail: fnakamura@tju.edu.cn

  • Received Date: July 02, 2024
  • Revised Date: November 22, 2024
  • Accepted Date: November 24, 2024
  • Intermediate filaments (IFs) in human cells are the products of six distinct gene families, all sharing homology in a core rod domain. These IFs assemble into non-polar polymers, providing cytoplasmic and nuclear mechanical support. Recent research has revealed the active and dynamic properties of IFs and their binding partners. This regulation extends beyond cell mechanics to include migration, mechanotransduction, and tumor growth. This comprehensive review will catalog all human IF genes and IF-associated proteins (IFAPs), detailing their names, sizes, functions, associated human diseases, relevant literature, and links to resources like Uniprot and the Protein Atlas database. These links provide access to additional information such as protein structure, subcellular localization, disease-causing mutations, and pathology. Using this catalog, we will overview the current understanding of the biological functions of IFs and IFAPs. This overview is crucial for identifying gaps in their characterization and understanding IF-mediated mechanotransduction. Additionally, we will consider potential future research directions.

  • This research was funded by the National Natural Science Foundation of China (Grant No. 32070777 to F.N.).

    None.

    CLC number: R329.2, Document code: A

    The authors reported no conflict of interests.

  • [1]
    Chakraborty S, Jasnin M, Baumeister W. Three-dimensional organization of the cytoskeleton: a cryo-electron tomography perspective[J]. Protein Sci, 2020, 29(6): 1302–1320. doi: 10.1002/pro.3858
    [2]
    Lorenz C, Köster S. Multiscale architecture: mechanics of composite cytoskeletal networks[J]. Biophys Rev (Melville), 2022, 3(3): 031304. doi: 10.1063/5.0099405
    [3]
    Doganyigit Z, Eroglu E, Okan A. Intermediate filament proteins are reliable immunohistological biomarkers to help diagnose multiple tissue-specific diseases[J]. Anat Histol Embryol, 2023, 52(5): 655–672. doi: 10.1111/ahe.12937
    [4]
    Barritt J, King AT, Pickard JN. The effects of cystine diet on keratin composition in rabbit wool[J]. Biochem J, 1930, 24(4): 1061–1065. doi: 10.1042/bj0241061
    [5]
    Palay SL, Palade GE. The fine structure of neurons[J]. J Biophys Biochem Cytol, 1955, 1(1): 69–88. doi: 10.1083/jcb.1.1.69
    [6]
    Ishikawa H, Bischoff R, Holtzer H. Formation of arrowhead complexes with heavy meromyosin in a variety of cell types[J]. J Cell Biol, 1969, 43(2): 312–328. doi: 10.1083/jcb.43.2.312
    [7]
    Franke WW, Schmid E, Osborn M, et al. Different intermediate-sized filaments distinguished by immunofluorescence microscopy[J]. Proc Natl Acad Sci U S A, 1978, 75(10): 5034–5038. doi: 10.1073/pnas.75.10.5034
    [8]
    Schmid E, Tapscott S, Bennett GS, et al. Differential location of different types of intermediate-sized filaments in various tissues of the chicken embryo[J]. Differentiation, 1979, 15(1): 27–40. https://pubmed.ncbi.nlm.nih.gov/93557/
    [9]
    Goldmann WH. Intermediate filaments and cellular mechanics[J]. Cell Biol Int, 2018, 42(2): 132–138. doi: 10.1002/cbin.10879
    [10]
    Gao J, Nakamura F. Actin-associated proteins and small molecules targeting the actin cytoskeleton[J]. Int J Mol Sci, 2022, 23(4): 2118. doi: 10.3390/ijms23042118
    [11]
    Peng N, Nakamura F. Microtubule-associated proteins and enzymes modifying tubulin[J]. Cytoskeleton (Hoboken), 2023, 80(3-4): 60–76. doi: 10.1002/cm.21748
    [12]
    Bott CJ, Winckler B. Intermediate filaments in developing neurons: beyond structure[J]. Cytoskeleton (Hoboken), 2020, 77(3-4): 110–128. doi: 10.1002/cm.21597
    [13]
    Dutour-Provenzano G, Etienne-Manneville S. Intermediate filaments[J]. Curr Biol, 2021, 31(10): R522–R529. doi: 10.1016/j.cub.2021.04.011
    [14]
    Eldirany SA, Lomakin IB, Ho M, et al. Recent insight into intermediate filament structure[J]. Curr Opin Cell Biol, 2021, 68: 132–143. doi: 10.1016/j.ceb.2020.10.001
    [15]
    Sjöqvist M, Antfolk D, Suarez-Rodriguez F, et al. From structural resilience to cell specification - intermediate filaments as regulators of cell fate[J]. FASEB J, 2021, 35(1): e21182. https://pubmed.ncbi.nlm.nih.gov/33205514/
    [16]
    Romano R, Del Fiore VS, Bucci C. Role of the intermediate filament protein peripherin in health and disease[J]. Int J Mol Sci, 2022, 23(23): 15416. doi: 10.3390/ijms232315416
    [17]
    Infante E, Etienne-Manneville S. Intermediate filaments: integration of cell mechanical properties during migration[J]. Front Cell Dev Biol, 2022, 10: 951816. doi: 10.3389/fcell.2022.951816
    [18]
    Coulombe PA, Pineda CM, Jacob JT, et al. Nuclear roles for non-lamin intermediate filament proteins[J]. Curr Opin Cell Biol, 2024, 86: 102303. doi: 10.1016/j.ceb.2023.102303
    [19]
    Pogoda K, Janmey PA. Transmit and protect: the mechanical functions of intermediate filaments[J]. Curr Opin Cell Biol, 2023, 85: 102281. doi: 10.1016/j.ceb.2023.102281
    [20]
    Schwarz N, Leube RE. Plasticity of cytoplasmic intermediate filament architecture determines cellular functions[J]. Curr Opin Cell Biol, 2023, 85: 102270. doi: 10.1016/j.ceb.2023.102270
    [21]
    Utsunomiya H, Fujita M, Naito F, et al. Cell cycle-dependent dynamics of a plant intermediate filament motif protein with intracellular localization related to microtubules[J]. Protoplasma, 2020, 257(5): 1387–1400. doi: 10.1007/s00709-020-01512-1
    [22]
    Shymanovich T, Vandenbrink JP, Herranz R, et al. Spaceflight studies identify a gene encoding an intermediate filament involved in tropism pathways[J]. Plant Physiol Biochem, 2022, 171: 191–200. doi: 10.1016/j.plaphy.2021.12.039
    [23]
    Jacob JT, Coulombe PA, Kwan R, et al. Types I and Ⅱ keratin intermediate filaments[J]. Cold Spring Harb Perspect Biol, 2018, 10(4): a018275. doi: 10.1101/cshperspect.a018275
    [24]
    Mohamad J, Sarig O, Beattie P, et al. A unique skin phenotype resulting from a large heterozygous deletion spanning six keratin genes[J]. Br J Dermatol, 2022, 187(5): 773–777. doi: 10.1111/bjd.21766
    [25]
    Li P, Rietscher K, Jopp H, et al. Posttranslational modifications of keratins and their associated proteins as therapeutic targets in keratin diseases[J]. Curr Opin Cell Biol, 2023, 85: 102264. doi: 10.1016/j.ceb.2023.102264
    [26]
    Kotalevskaya YY, Stepanov VA. Molecular genetic basis of epidermolysis bullosa[J]. Vavilovskii Zhurnal Genet Selektsii, 2023, 27(1): 18–27. https://pubmed.ncbi.nlm.nih.gov/36923479/
    [27]
    Walko G, Castañón MJ, Wiche G. Molecular architecture and function of the hemidesmosome[J]. Cell Tissue Res, 2015, 360(3): 529–544. doi: 10.1007/s00441-015-2216-6
    [28]
    Evtushenko NA, Beilin AK, Kosykh AV, et al. Keratins as an inflammation trigger point in epidermolysis bullosa simplex[J]. Int J Mol Sci, 2021, 22(22): 12446. doi: 10.3390/ijms222212446
    [29]
    Chen F, Yao L, Zhang X, et al. Damaged keratin filament network caused by KRT5 mutations in localized recessive epidermolysis bullosa simplex[J]. Front Genet, 2021, 12: 736610. doi: 10.3389/fgene.2021.736610
    [30]
    Has C, Fischer J. Inherited epidermolysis bullosa: new diagnostics and new clinical phenotypes[J]. Exp Dermatol, 2019, 28(10): 1146–1152. doi: 10.1111/exd.13668
    [31]
    DeStefano GM, Christiano AM. The genetics of human skin disease[J]. Cold Spring Harb Perspect Med, 2014, 4(10): a015172. doi: 10.1101/cshperspect.a015172
    [32]
    Leube RE, Schwarz N. Current mysteries of pachyonychia congenita[J]. Br J Dermatol, 2020, 182(3): 525–526. doi: 10.1111/bjd.18688
    [33]
    Goldfarb LG, Olivé M, Vicart P, et al. Intermediate filament diseases: desminopathy[M]//Laing NG. The Sarcomere and Skeletal Muscle Disease. New York: Springer, 2008: 131–164.
    [34]
    Kubánek M, Schimerová T, Piherová L, et al. Desminopathy: novel desmin variants, a new cardiac phenotype, and further evidence for secondary mitochondrial dysfunction[J]. J Clin Med, 2020, 9(4): 937. doi: 10.3390/jcm9040937
    [35]
    Su W, van Wijk SW, Brundel BJJM. Desmin variants: trigger for cardiac arrhythmias?[J]. Front Cell Dev Biol, 2022, 10: 986718. doi: 10.3389/fcell.2022.986718
    [36]
    Marunouchi T, Inomata S, Sanbe A, et al. Protective effect of geranylgeranylacetone via enhanced induction of HSPB1 and HSPB8 in mitochondria of the failing heart following myocardial infarction in rats[J]. Eur J Pharmacol, 2014, 730: 140–147. doi: 10.1016/j.ejphar.2014.02.037
    [37]
    Sanbe A, Daicho T, Mizutani R, et al. Protective effect of geranylgeranylacetone via enhancement of HSPB8 induction in desmin-related cardiomyopathy[J]. PLoS One, 2009, 4(4): e5351. doi: 10.1371/journal.pone.0005351
    [38]
    Viedma-Poyatos Á, Pajares MA, Peérez-Sala D. Type III intermediate filaments as targets and effectors of electrophiles and oxidants[J]. Redox Biol, 2020, 36: 101582. doi: 10.1016/j.redox.2020.101582
    [39]
    Pérez-Sala D, Quinlan RA. The redox-responsive roles of intermediate filaments in cellular stress detection, integration and mitigation[J]. Curr Opin Cell Biol, 2024, 86: 102283. doi: 10.1016/j.ceb.2023.102283
    [40]
    Botha CJ, Mathe YZ, Ferreira GCH, et al. Cytotoxicity of the sesquiterpene lactones, ivalin and parthenolide in murine muscle cell lines and their effect on desmin, a cytoskeletal intermediate filament[J]. Toxins (Basel), 2020, 12(7): 459. doi: 10.3390/toxins12070459
    [41]
    Zhao J, Liem RK. α-Internexin and peripherin: expression, assembly, functions, and roles in disease[J]. Methods Enzymol, 2016, 568: 477–507.
    [42]
    Jaramillo-Rangel G, Chávez-Briones MDL, Ancer-Arellano A, et al. Nestin-expressing cells in the lung: the bad and the good parts[J]. Cells, 2021, 10(12): 3413. doi: 10.3390/cells10123413
    [43]
    Maggi L, Mavroidis M, Psarras S, et al. Skeletal and cardiac muscle disorders caused by mutations in genes encoding intermediate filament proteins[J]. Int J Mol Sci, 2021, 22(8): 4256. doi: 10.3390/ijms22084256
    [44]
    Ducray F, Criniere E, Idbaih A, et al. α-Internexin expression identifies 1p19q codeleted gliomas[J]. Neurology, 2009, 72(2): 156–161. doi: 10.1212/01.wnl.0000339055.64476.cb
    [45]
    Yuan A, Rao MV, Veeranna, et al. Neurofilaments and neurofilament proteins in health and disease[J]. Cold Spring Harb Perspect Biol, 2017, 9(4): a018309. doi: 10.1101/cshperspect.a018309
    [46]
    Kotaich F, Caillol D, Bomont P. Neurofilaments in health and Charcot-Marie-Tooth disease[J]. Front Cell Dev Biol, 2023, 11: 1275155. doi: 10.3389/fcell.2023.1275155
    [47]
    Stone EJ, Kolb SJ, Brown A. A review and analysis of the clinical literature on Charcot-Marie-Tooth disease caused by mutations in neurofilament protein L[J]. Cytoskeleton (Hoboken), 2021, 78(3): 97–110. doi: 10.1002/cm.21676
    [48]
    Pisciotta C, Pareyson D. CMT2CC associated with NEFH mutations: a predominantly motor neuronopathy[J]. J Neurol Neurosurg Psychiatry, 2022, 93(1): 1. https://pubmed.ncbi.nlm.nih.gov/34518332/
    [49]
    Cortese A, Wilcox JE, Polke JM, et al. Targeted next-generation sequencing panels in the diagnosis of Charcot-Marie-Tooth disease[J]. Neurology, 2020, 94(1): e51–e61. https://pubmed.ncbi.nlm.nih.gov/31827005/
    [50]
    Stone EJ, Uchida A, Brown A. Charcot-Marie-Tooth disease Type 2E/1F mutant neurofilament proteins assemble into neurofilaments[J]. Cytoskeleton (Hoboken), 2019, 76(7-8): 423–439. doi: 10.1002/cm.21566
    [51]
    Nowogrodzka K, Jankowska-Konsur A. Emerging biomarker in carcinogenesis. Focus on nestin[J]. Postepy Dermatol Alergol, 2022, 39(6): 1001–1007. doi: 10.5114/ada.2022.122599
    [52]
    Russell MA. Synemin redefined: multiple binding partners results in multifunctionality[J]. Front Cell Dev Biol, 2020, 8: 159. doi: 10.3389/fcell.2020.00159
    [53]
    Paulin D, Hovhannisyan Y, Kasakyan S, et al. Synemin-related skeletal and cardiac myopathies: an overview of pathogenic variants[J]. Am J Physiol Cell Physiol, 2020, 318(4): C709–C718. doi: 10.1152/ajpcell.00485.2019
    [54]
    Song S, Landsbury A, Dahm R, et al. Functions of the intermediate filament cytoskeleton in the eye lens[J]. J Clin Invest, 2009, 119(7): 1837–1848. doi: 10.1172/JCI38277
    [55]
    Wang H, Zhang T, Wu D, et al. A novel beaded filament structural protein 1 (BFSP1) gene mutation associated with autosomal dominant congenital cataract in a Chinese family[J]. Mol Vis, 2013, 19: 2590–2595. https://pubmed.ncbi.nlm.nih.gov/24379646/
    [56]
    Liu Q, Wang K, Zhu S. A novel p. G112E mutation in BFSP2 associated with autosomal dominant pulverulent cataract with sutural opacities[J]. Curr Eye Res, 2014, 39(10): 1013–1019. doi: 10.3109/02713683.2014.891749
    [57]
    Wang H, Ouyang G, Zhu Y. D348N mutation of BFSP1 gene in congenital cataract: it does matter[J]. Cell Biochem Biophys, 2023, 81(4): 757–763. doi: 10.1007/s12013-023-01169-6
    [58]
    Cvekl A, Camerino MJ. Generation of lens progenitor cells and lentoid bodies from pluripotent stem cells: novel tools for human lens development and ocular disease etiology[J]. Cells, 2022, 11(21): 3516. doi: 10.3390/cells11213516
    [59]
    Marcelot A, Worman HJ, Zinn-Justin S. Protein structural and mechanistic basis of progeroid laminopathies[J]. FEBS J, 2021, 288(9): 2757–2772. doi: 10.1111/febs.15526
    [60]
    Shah PP, Santini GT, Shen KM, et al. InterLINCing chromatin organization and mechanobiology in laminopathies[J]. Curr Cardiol Rep, 2023, 25(5): 307–314. doi: 10.1007/s11886-023-01853-2
    [61]
    Wong X, Stewart CL. The laminopathies and the insights they provide into the structural and functional organization of the nucleus[J]. Annu Rev Genomics Hum Genet, 2020, 21: 263–288. doi: 10.1146/annurev-genom-121219-083616
    [62]
    Malashicheva A, Perepelina K. Diversity of nuclear lamin A/C action as a key to tissue-specific regulation of cellular identity in health and disease[J]. Front Cell Dev Biol, 2021, 9: 761469. doi: 10.3389/fcell.2021.761469
    [63]
    Yamada S, Ko T, Ito M, et al. TEAD1 trapping by the Q353R-Lamin A/C causes dilated cardiomyopathy[J]. Sci Adv, 2023, 9(15): eade7047. doi: 10.1126/sciadv.ade7047
    [64]
    Infante A, Rodríguez CI. Pathologically relevant prelamin a interactions with transcription factors[J]. Methods Enzymol, 2016, 569: 485–501. https://pubmed.ncbi.nlm.nih.gov/26778572/
    [65]
    Evangelisti C, Rusciano I, Mongiorgi S, et al. The wide and growing range of lamin B-related diseases: from laminopathies to cancer[J]. Cell Mol Life Sci, 2022, 79(2): 126. doi: 10.1007/s00018-021-04084-2
    [66]
    Samen U, Eikmanns BJ, Reinscheid DJ, et al. The surface protein Srr-1 of Streptococcus agalactiae binds human keratin 4 and promotes adherence to epithelial HEp-2 cells[J]. Infect Immun, 2007, 75(11): 5405–5414. doi: 10.1128/IAI.00717-07
    [67]
    Das S, Ravi V, Desai A. Japanese encephalitis virus interacts with vimentin to facilitate its entry into porcine kidney cell line[J]. Virus Res, 2011, 160(1-2): 404–408. doi: 10.1016/j.virusres.2011.06.001
    [68]
    Deng L, Spencer BL, Holmes JA, et al. The Group B Streptococcal surface antigen Ⅰ/Ⅱ protein, BspC, interacts with host vimentin to promote adherence to brain endothelium and inflammation during the pathogenesis of meningitis[J]. PLoS Pathog, 2019, 15(6): e1007848. doi: 10.1371/journal.ppat.1007848
    [69]
    Ma X, Ling Y, Li P, et al. Cellular vimentin interacts with foot-and-mouth disease virus nonstructural protein 3A and negatively modulates viral replication[J]. J Virol, 2020, 94(16): e00273–20. https://pubmed.ncbi.nlm.nih.gov/32493819/
    [70]
    Wang A, Liu X, Heckmann A, et al. A Trichinella spiralis new born larvae-specific protein, Ts-NBL1, interacts with host's cell vimentin[J]. Parasitol Res, 2022, 121(5): 1369–1378. doi: 10.1007/s00436-022-07479-7
    [71]
    Deptuła P, Fiedoruk K, Wasilewska M, et al. Physicochemical nature of SARS-CoV-2 spike protein binding to human vimentin[J]. ACS Appl Mater Interfaces, 2023, 15(28): 34172–34180. doi: 10.1021/acsami.3c03347
    [72]
    Zhang Y, Zhao S, Li Y, et al. Host cytoskeletal vimentin serves as a structural organizer and an RNA-binding protein regulator to facilitate Zika viral replication[J]. Proc Natl Acad Sci U S A, 2022, 119(8): e2113909119. doi: 10.1073/pnas.2113909119
    [73]
    Risinger AL, Du L. Targeting and extending the eukaryotic druggable genome with natural products: cytoskeletal targets of natural products[J]. Nat Prod Rep, 2020, 37(5): 634–652. doi: 10.1039/C9NP00053D
    [74]
    Kerns ML, DePianto D, Dinkova-Kostova AT, et al. Reprogramming of keratin biosynthesis by sulforaphane restores skin integrity in epidermolysis bullosa simplex[J]. Proc Natl Acad Sci U S A, 2007, 104(36): 14460–14465. doi: 10.1073/pnas.0706486104
    [75]
    Virtanen M, Gedde-Dahl T Jr, Mörk NJ, et al. Phenotypic/genotypic correlations in patients with epidermolytic hyperkeratosis and the effects of retinoid therapy on keratin expression[J]. Acta Derm Venereol, 2001, 81(3): 163–170. doi: 10.1080/000155501750376221
    [76]
    Zieman AG, Poll BG, Ma J, et al. Altered keratinocyte differentiation is an early driver of keratin mutation-based palmoplantar keratoderma[J]. Hum Mol Genet, 2019, 28(13): 2255–2270. doi: 10.1093/hmg/ddz050
    [77]
    Kim KH, Jung JH, Chung WS, et al. Ferulic acid induces keratin 6α via inhibition of nuclear β-catenin accumulation and activation of Nrf2 in wound-induced inflammation[J]. Biomedicines, 2021, 9(5): 459. doi: 10.3390/biomedicines9050459
    [78]
    Kwan R, Looi K, Omary MB. Absence of keratins 8 and 18 in rodent epithelial cell lines associates with keratin gene mutation and DNA methylation: cell line selective effects on cell invasion[J]. Exp Cell Res, 2015, 335(1): 12–22. doi: 10.1016/j.yexcr.2015.04.003
    [79]
    Rietscher K, Jahnke HG, Rübsam M, et al. Kinase inhibition by PKC412 prevents epithelial sheet damage in autosomal dominant epidermolysis bullosa simplex through keratin and cell contact stabilization[J]. J Invest Dermatol, 2022, 142(12): 3282–3293. doi: 10.1016/j.jid.2022.05.1088
    [80]
    Ziaei E, de Paiva IM, Yao SJ, et al. Peptide-drug conjugate targeting keratin 1 inhibits triple-negative breast cancer in mice[J]. Mol Pharm, 2023, 20(7): 3570–3577. doi: 10.1021/acs.molpharmaceut.3c00189
    [81]
    Lee GH, Lekwuttikarn R, Tafoya E, et al. Transcriptomic repositioning analysis identifies mTOR inhibitor as potential therapy for epidermolysis bullosa simplex[J]. J Invest Dermatol, 2022, 142(2): 382–389. doi: 10.1016/j.jid.2021.07.170
    [82]
    Cabet E, Batonnet-Pichon S, Delort F, et al. Antioxidant treatment and induction of autophagy cooperate to reduce desmin aggregation in a cellular model of desminopathy[J]. PLoS One, 2015, 10(9): e0137009. doi: 10.1371/journal.pone.0137009
    [83]
    Bachetti T, Zanni ED, Adamo A, et al. Beneficial effect of phenytoin and carbamazepine on GFAP gene expression and mutant GFAP folding in a cellular model of Alexander's disease[J]. Front Pharmacol, 2021, 12: 723218. doi: 10.3389/fphar.2021.723218
    [84]
    Satelli A, Li S. Vimentin in cancer and its potential as a molecular target for cancer therapy[J]. Cell Mol Life Sci, 2011, 68(18): 3033–3046. doi: 10.1007/s00018-011-0735-1
    [85]
    Bollong MJ, Pietilä M, Pearson AD, et al. A vimentin binding small molecule leads to mitotic disruption in mesenchymal cancers[J]. Proc Natl Acad Sci U S A, 2017, 114(46): E9903–E9912. doi: 10.1073/pnas.1716009114
    [86]
    Ramos I, Stamatakis K, Oeste CL, et al. Vimentin as a multifaceted player and potential therapeutic target in viral infections[J]. Int J Mol Sci, 2020, 21(13): 4675. doi: 10.3390/ijms21134675
    [87]
    Bargagna-Mohan P, Hamza A, Kim YE, et al. The tumor inhibitor and antiangiogenic agent Withaferin A targets the intermediate filament protein vimentin[J]. Chem Biol, 2007, 14(6): 623–634. doi: 10.1016/j.chembiol.2007.04.010
    [88]
    Mohan R, Bargagna-Mohan P. The use of Withaferin A to study intermediate filaments[J]. Methods Enzymol, 2016, 568: 187–218. https://pubmed.ncbi.nlm.nih.gov/26795472/
    [89]
    Bargagna-Mohan P, Paranthan RR, Hamza A, et al. Withaferin A targets intermediate filaments glial fibrillary acidic protein and vimentin in a model of retinal gliosis[J]. J Biol Chem, 2010, 285(10): 7657–7669. doi: 10.1074/jbc.M109.093765
    [90]
    Bargagna-Mohan P, Paranthan RR, Hamza A, et al. Corneal antifibrotic switch identified in genetic and pharmacological deficiency of vimentin[J]. J Biol Chem, 2012, 287(2): 989–1006. doi: 10.1074/jbc.M111.297150
    [91]
    Thaiparambil JT, Bender L, Ganesh T, et al. Withaferin A inhibits breast cancer invasion and metastasis at sub-cytotoxic doses by inducing vimentin disassembly and serine 56 phosphorylation[J]. Int J Cancer, 2011, 129(11): 2744–2755. doi: 10.1002/ijc.25938
    [92]
    de Pablo Y, Chen M, Möllerström E, et al. Drugs targeting intermediate filaments can improve neurosupportive properties of astrocytes[J]. Brain Res Bull, 2018, 136: 130–138. doi: 10.1016/j.brainresbull.2017.01.021
    [93]
    Kaschula CH, Tuveri R, Ngarande E, et al. The garlic compound ajoene covalently binds vimentin, disrupts the vimentin network and exerts anti-metastatic activity in cancer cells[J]. BMC Cancer, 2019, 19(1): 248. doi: 10.1186/s12885-019-5388-8
    [94]
    Trogden KP, Battaglia RA, Kabiraj P, et al. An image-based small-molecule screen identifies vimentin as a pharmacologically relevant target of simvastatin in cancer cells[J]. FASEB J, 2018, 32(5): 2841–2854. doi: 10.1096/fj.201700663R
    [95]
    Kim HR, Warrington SJ, López-Guajardo A, et al. ALD-R491 regulates vimentin filament stability and solubility, cell contractile force, cell migration speed and directionality[J]. Front Cell Dev Biol, 2022, 10: 926283. doi: 10.3389/fcell.2022.926283
    [96]
    Rezaeianpour M, Mazidi SM, Nami R, et al. Vimentin-targeted radiopeptide 99mTc-HYNIC-(tricine/EDDA)-VNTANST: a promising drug for pulmonary fibrosis imaging[J]. Nucl Med Commun, 2023, 44(9): 777–787. doi: 10.1097/MNM.0000000000001724
    [97]
    He S, Lin J, Lin L, et al. Shikonin-mediated inhibition of nestin affects hypoxia-induced proliferation of pulmonary artery smooth muscle cells[J]. Mol Med Rep, 2018, 18(3): 3476–3482. https://pubmed.ncbi.nlm.nih.gov/30066896/
    [98]
    Feng X, Han H, Guo Y, et al. LncRNA ENST869 targeting Nestin transcriptional region to affect the pharmacological effects of chidamide in breast cancer cells[J]. Front Oncol, 2022, 12: 874343. doi: 10.3389/fonc.2022.874343
    [99]
    Lee SJ, Jung YS, Yoon MH, et al. Interruption of progerin-lamin A/C binding ameliorates Hutchinson-Gilford progeria syndrome phenotype[J]. J Clin Invest, 2016, 126(10): 3879–3893. doi: 10.1172/JCI84164
    [100]
    Kang SM, Yoon MH, Ahn J, et al. Progerinin, an optimized progerin-lamin A binding inhibitor, ameliorates premature senescence phenotypes of Hutchinson-Gilford progeria syndrome[J]. Commun Biol, 2021, 4(1): 5. doi: 10.1038/s42003-020-01540-w
    [101]
    Kang SM, Seo S, Song EJ, et al. Progerinin, an inhibitor of progerin, alleviates cardiac abnormalities in a model mouse of hutchinson-gilford progeria syndrome[J]. Cells, 2023, 12(9): 1232. doi: 10.3390/cells12091232
    [102]
    Glynn MW, Glover TW. Incomplete processing of mutant lamin A in Hutchinson-Gilford progeria leads to nuclear abnormalities, which are reversed by farnesyltransferase inhibition[J]. Hum Mol Genet, 2005, 14(20): 2959–2969. doi: 10.1093/hmg/ddi326
    [103]
    Finley J. Alteration of splice site selection in the LMNA gene and inhibition of progerin production via AMPK activation[J]. Med Hypotheses, 2014, 83(5): 580–587. doi: 10.1016/j.mehy.2014.08.016
    [104]
    Finley J. Cellular stress and AMPK activation as a common mechanism of action linking the effects of metformin and diverse compounds that alleviate accelerated aging defects in Hutchinson-Gilford progeria syndrome[J]. Med Hypotheses, 2018, 118: 151–162. doi: 10.1016/j.mehy.2018.06.029
    [105]
    Kim BH, Woo TG, Kang SM, et al. Splicing variants, protein-protein interactions, and drug targeting in Hutchinson-Gilford progeria syndrome and small cell lung cancer[J]. Genes (Basel), 2022, 13(2): 165. doi: 10.3390/genes13020165
    [106]
    Captur G, Arbustini E, Bonne G, et al. Lamin and the heart[J]. Heart, 2018, 104(6): 468–479. doi: 10.1136/heartjnl-2017-312338
    [107]
    Tsai CF, Wu JY, Hsu YW. Protective effects of Rosmarinic acid against selenite-induced cataract and oxidative damage in rats[J]. Int J Med Sci, 2019, 16(5): 729–740. doi: 10.7150/ijms.32222
    [108]
    Janmey PA, Euteneuer U, Traub P, et al. Viscoelastic properties of vimentin compared with other filamentous biopolymer networks[J]. J Cell Biol, 1991, 113(1): 155–160. doi: 10.1083/jcb.113.1.155
    [109]
    Huber F, Boire A, López MP, et al. Cytoskeletal crosstalk: when three different personalities team up[J]. Curr Opin Cell Biol, 2015, 32(24): 39–47.
    [110]
    RöllekeU, Kumari P, Meyer R, et al. The unique biomechanics of intermediate filaments - from single filaments to cells and tissues[J]. Curr Opin Cell Biol, 2023, 85: 102263. doi: 10.1016/j.ceb.2023.102263
    [111]
    Wen Q, Janmey PA. Polymer physics of the cytoskeleton[J]. Curr Opin Solid State Mater Sci, 2011, 15(5): 177–182. doi: 10.1016/j.cossms.2011.05.002
    [112]
    Sapra KT, Medalia O. Bend, push, stretch: remarkable structure and mechanics of single intermediate filaments and meshworks[J]. Cells, 2021, 10(8): 1960. doi: 10.3390/cells10081960
    [113]
    van Bodegraven EJ, Etienne-Manneville S. Intermediate filaments from tissue integrity to single molecule mechanics[J]. Cells, 2021, 10(8): 1905. doi: 10.3390/cells10081905
    [114]
    Hu J, Li Y, Hao Y, et al. High stretchability, strength, and toughness of living cells enabled by hyperelastic vimentin intermediate filaments[J]. Proc Natl Acad Sci U S A, 2019, 116(35): 17175–17180. doi: 10.1073/pnas.1903890116
    [115]
    Ackbarow T, Sen D, Thaulow C, et al. Alpha-helical protein networks are self-protective and flaw-tolerant[J]. PLoS One, 2009, 4(6): e6015. doi: 10.1371/journal.pone.0006015
    [116]
    Block J, Witt H, Candelli A, et al. Nonlinear loading-rate-dependent force response of individual vimentin intermediate filaments to applied strain[J]. Phys Rev Lett, 2017, 118(4): 048101. doi: 10.1103/PhysRevLett.118.048101
    [117]
    Johnson CP, Tang HY, Carag C, et al. Forced unfolding of proteins within cells[J]. Science, 2007, 317(5838): 663–666. doi: 10.1126/science.1139857
    [118]
    Fleissner F, Kumar S, Klein N, et al. Tension causes unfolding of intracellular vimentin intermediate filaments[J]. Adv Biosyst, 2020, 4(11): e2000111. doi: 10.1002/adbi.202000111
    [119]
    Seltmann K, Fritsch AW, Käs JA, et al. Keratins significantly contribute to cell stiffness and impact invasive behavior[J]. Proc Natl Acad Sci U S A, 2013, 110(46): 18507–18512. doi: 10.1073/pnas.1310493110
    [120]
    Ramms L, Fabris G, Windoffer R, et al. Keratins as the main component for the mechanical integrity of keratinocytes[J]. Proc Natl Acad Sci U S A, 2013, 110(46): 18513–18518. doi: 10.1073/pnas.1313491110
    [121]
    Charrier EE, Montel L, Asnacios A, et al. The desmin network is a determinant of the cytoplasmic stiffness of myoblasts[J]. Biol Cell, 2018, 110(4): 77–90. doi: 10.1111/boc.201700040
    [122]
    Patteson AE, Vahabikashi A, Pogoda K, et al. Vimentin protects cells against nuclear rupture and DNA damage during migration[J]. J Cell Biol, 2019, 218(12): 4079–4092. doi: 10.1083/jcb.201902046
    [123]
    Laly AC, Sliogeryte K, Pundel OJ, et al. The keratin network of intermediate filaments regulates keratinocyte rigidity sensing and nuclear mechanotransduction[J]. Sci Adv, 2021, 7(5): eabd6187. doi: 10.1126/sciadv.abd6187
    [124]
    Swoger M, Gupta S, Charrier EE, et al. Vimentin intermediate filaments mediate cell morphology on viscoelastic substrates[J]. ACS Appl Bio Mater, 2022, 5(2): 552–561. doi: 10.1021/acsabm.1c01046
    [125]
    Alisafaei F, Mandal K, Saldanha R, et al. Vimentin is a key regulator of cell mechanosensing through opposite actions on actomyosin and microtubule networks[J]. Commun Biol, 2024, 7(1): 658. doi: 10.1038/s42003-024-06366-4
    [126]
    Daday C, Kolšek K, Gräter F. The mechano-sensing role of the unique SH3 insertion in plakin domains revealed by Molecular Dynamics simulations[J]. Sci Rep, 2017, 7(1): 11669. doi: 10.1038/s41598-017-11017-2
    [127]
    Suman SK, Daday C, Ferraro T, et al. The plakin domain of C. elegans VAB-10/plectin acts as a hub in a mechanotransduction pathway to promote morphogenesis[J]. Development, 2019, 146(24): dev183780. doi: 10.1242/dev.183780
    [128]
    Na S, Chowdhury F, Tay B, et al. Plectin contributes to mechanical properties of living cells[J]. Am J Physiol Cell Physiol, 2009, 296(4): C868–C877. doi: 10.1152/ajpcell.00604.2008
    [129]
    Almeida FV, Walko G, McMillan JR, et al. The cytolinker plectin regulates nuclear mechanotransduction in keratinocytes[J]. J Cell Sci, 2015, 128(24): 4475–4486. doi: 10.1242/jcs.173435
    [130]
    Wintner O, Hirsch-Attas N, Schlossberg M, et al. A unified linear viscoelastic model of the cell nucleus defines the mechanical contributions of lamins and chromatin[J]. Adv Sci (Weinh), 2020, 7(8): 1901222. doi: 10.1002/advs.201901222
    [131]
    Sapra KT, Qin Z, Dubrovsky-Gaupp A, et al. Nonlinear mechanics of lamin filaments and the meshwork topology build an emergent nuclear lamina[J]. Nat Commun, 2020, 11(1): 6205. doi: 10.1038/s41467-020-20049-8
    [132]
    Khilan AA, Al-Maslamani NA, Horn HF. Cell stretchers and the LINC complex in mechanotransduction[J]. Arch Biochem Biophys, 2021, 702: 108829. doi: 10.1016/j.abb.2021.108829
    [133]
    Sun J, Groppi VE, Gui H, et al. High-throughput screening for drugs that modulate intermediate filament proteins[J]. Methods Enzymol, 2016, 568: 163–185. https://pubmed.ncbi.nlm.nih.gov/26795471/
    [134]
    Sharma P, Alsharif S, Fallatah A, et al. Intermediate filaments as effectors of cancer development and metastasis: a focus on keratins, vimentin, and nestin[J]. Cells, 2019, 8(5): 497. doi: 10.3390/cells8050497
    [135]
    Nakamura F, Song M, Hartwig JH, et al. Documentation and localization of force-mediated filamin A domain perturbations in moving cells[J]. Nat Commun, 2014, 5: 4656. doi: 10.1038/ncomms5656
    [136]
    Aragona M, Panciera T, Manfrin A, et al. A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors[J]. Cell, 2013, 154(5): 1047–1059. doi: 10.1016/j.cell.2013.07.042
    [137]
    Nakamura F. The role of mechanotransduction in contact inhibition of locomotion and proliferation[J]. Int J Mol Sci, 2024, 25(4): 2135. doi: 10.3390/ijms25042135
    [138]
    Fallatah A, Anastasakis DG, Manzourolajdad A, et al. Keratin 19 binds and regulates cytoplasmic HNRNPK mRNA targets in triple-negative breast cancer[J]. BMC Mol Cell Biol, 2023, 24(1): 26. doi: 10.1186/s12860-023-00488-z
    [139]
    Kim SH, Kim S, Choi HI, et al. Callus formation is associated with hyperproliferation and incomplete differentiation of keratinocytes, and increased expression of adhesion molecules[J]. Br J Dermatol, 2010, 163(3): 495–501. doi: 10.1111/j.1365-2133.2010.09842.x
  • Related Articles

    [1]Pavan Kumar Dhanyamraju. Drug resistance mechanisms in cancers: Execution of pro-survival strategies[J]. The Journal of Biomedical Research, 2024, 38(2): 95-121. DOI: 10.7555/JBR.37.20230248
    [2]Gelena Kakurina, Marina Stakheeva, Elena Sereda, Evgenia Sidenko, Olga Cheremisina, Evgeny Choinzonov, Irina Kondakova. A pilot study of the relative number of circulating tumor cells and leukocytes containing actin-binding proteins in head and neck cancer patients[J]. The Journal of Biomedical Research, 2023, 37(3): 213-224. DOI: 10.7555/JBR.36.20220182
    [3]Liu Xiaowei, Nakamura Fumihiko. Mechanotransduction, nanotechnology, and nanomedicine[J]. The Journal of Biomedical Research, 2021, 35(4): 284-293. DOI: 10.7555/JBR.34.20200063
    [4]Tiwari-Heckler Shilpa, Jiang Z. Gordon, Popov Yury, J. Mukamal Kenneth. Daily high-dose aspirin does not lower APRI in the Aspirin-Myocardial Infarction Study[J]. The Journal of Biomedical Research, 2020, 34(2): 139-142. DOI: 10.7555/JBR.33.20190041
    [5]Vetrivel Preethi, Kim Seong Min, Saralamma Venu Venkatarame Gowda, Ha Sang Eun, Kim Eun Hee, Min Tae Sun, Kim Gon Sup. Function of flavonoids on different types of programmed cell death and its mechanism: a review[J]. The Journal of Biomedical Research, 2019, 33(6): 363-370. DOI: 10.7555/JBR.33.20180126
    [6]Minbo Zang, Qiao Zhou, Yunfei Zhu, Mingxi Liu, Zuomin Zhou. Effects of chemotherapeutic agent bendamustine for nonhodgkin lymphoma on spermatogenesis in mice[J]. The Journal of Biomedical Research, 2018, 32(6): 442-453. DOI: 10.7555/JBR.31.20170023
    [7]Huanqiang Wang, Congying Yang, Siyuan Wang, Tian Wang, Jingling Han, Kai Wei, Fucun Liu, Jida Xu, Xianzhen Peng, Jianming Wang. Cell-free plasma hypermethylated CASZ1, CDH13 and ING2 are promising biomarkers of esophageal cancer[J]. The Journal of Biomedical Research, 2018, 32(6): 424-433. DOI: 10.7555/JBR.32.20170065
    [8]Liangtao Zhao, Baobao Cai, Zipeng Lu, Lei Tian, Song Guo, Pengfei Wu, Dong Qian, Qingcheng Xu, Kuirong Jiang, Yi Miao. Modified methods for isolation of pancreatic stellate cells from human and rodent pancreas[J]. The Journal of Biomedical Research, 2016, 30(6): 510-516. DOI: 10.7555/JBR.30.20160033
    [9]Ming-Hai Wang, Ruiwen Zhang, Yong-Qing Zhou, Hang-Ping Yao. Pathogenesis of RON receptor tyrosine kinase in cancer cells: activation mechanism, functional crosstalk, and signaling addiction[J]. The Journal of Biomedical Research, 2013, 27(5): 345-356. DOI: 10.7555/JBR.27.20130038
    [10]Sundeep?S.?Tumber, Hong?Liu. Epidural abscess after multiple lumbar punctures for labour epidural catheter placement[J]. The Journal of Biomedical Research, 2010, 24(4): 332-335. DOI: 10.1016/S1674-8301(10)60046-2
  • Other Related Supplements

Catalog

    Figures(1)

    Article Metrics

    Article views (112) PDF downloads (49) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return