4.6

CiteScore

2.2

Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Chanjuan Gong, Xiaokai Zhou, Yin Fang, Yanjuan Zhang, Linjia Zhu, Zhengnian Ding. Effects of sevoflurane on left ventricular function by speckle-tracking echocardiography in coronary bypass patients: A randomized trial[J]. The Journal of Biomedical Research, 2024, 38(1): 76-86. DOI: 10.7555/JBR.37.20230173
Citation: Chanjuan Gong, Xiaokai Zhou, Yin Fang, Yanjuan Zhang, Linjia Zhu, Zhengnian Ding. Effects of sevoflurane on left ventricular function by speckle-tracking echocardiography in coronary bypass patients: A randomized trial[J]. The Journal of Biomedical Research, 2024, 38(1): 76-86. DOI: 10.7555/JBR.37.20230173

Effects of sevoflurane on left ventricular function by speckle-tracking echocardiography in coronary bypass patients: A randomized trial

More Information
  • Corresponding author:

    Zhengnian Ding and Linjia Zhu, Department of Anesthesiology and Perioperative Medicine, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China. E-mails: zhengnianding@njmu.edu.cn (Ding) and zhulinjia2010@163.com(Zhu)

  • △These authors contributed equally to this work.

  • Received Date: July 26, 2023
  • Revised Date: October 30, 2023
  • Accepted Date: November 01, 2023
  • Available Online: November 02, 2023
  • Published Date: December 03, 2023
  • The present study aimed to dynamically observe the segmental and global myocardial movements of the left ventricle during coronary artery bypass grafting by transesophageal speckle-tracking echocardiography, and to assess the effect of sevoflurane on cardiac function. Sixty-four patients scheduled for the off-pump coronary artery bypass grafting were randomly divided into a sevoflurane-based anesthesia (AS) group and a propofol-based total intravenous anesthesia (AA) group. The AS group demonstrated a higher absolute value of left ventricular global longitudinal strain than that of the AA group at both T1 (after harvesting all grafts and before coronary anastomosis) and T2 (30 min after completing all coronary anastomoses) (P < 0.05). Moreover, strain improvement in the segment with the highest preoperative strain was significantly reduced in the AS group, compared with the AA group at both T1 and T2 (P < 0.01). The flow of the left internal mammary artery-left anterior descending artery graft was superior, and the postoperative concentration of troponin T decreased rapidly in the AS group, compared with the AA group (P < 0.05). Compared with total intravenous anesthesia, sevoflurane resulted in a significantly higher global longitudinal strain, stroke volume, and cardiac output. Sevoflurane also led to an amelioration in the condition of the arterial graft. Furthermore, sevoflurane significantly reduced strain improvement in the segmental myocardium with a high preoperative strain value. The findings need to be replicated in larger studies.

  • We thank all the survey respondents who participated in the study. We would also like to thank Editage (www.editage.com) for English language editing.

    CLC number: R614; R543.3, Document code: A

    The authors reported no conflict of interests.

  • [1]
    Quin JA, Noubani M, Rove JY, et al. Coronary artery bypass grafting transit time flow measurement: graft patency and clinical outcomes[J]. Ann Thorac Surg, 2021, 112(3): 701–707. doi: 10.1016/j.athoracsur.2020.12.011
    [2]
    Lawton JS, Tamis-Holland JE, Bangalore S, et al. 2021 ACC/AHA/SCAI Guideline for coronary artery revascularization: executive summary: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines[J]. Circulation, 2022, 145(3): e4–e17. doi: 10.1161/CIR.0000000000001039
    [3]
    Martuscelli E. Coronary artery bypass graft[M]//Dewey M. Card CT. 2nd ed. Berlin, Heidelberg: Springer, 2014: 191–198.
    [4]
    Maslov LN, Naryzhnaya NV, Popov SV, et al. A historical literature review of coronary microvascular obstruction and intra-myocardial hemorrhage as functional/structural phenomena[J]. J Biomed Res, 2023, 37(4): 281–302. doi: 10.7555/JBR.37.20230021
    [5]
    Smenes BT, Nes BM, Letnes JM, et al. Cardiorespiratory fitness and the incidence of coronary surgery and postoperative mortality: the HUNT study[J]. Eur J Cardio-Thorac Surg, 2022, 62(3): ezac126. doi: 10.1093/ejcts/ezac126
    [6]
    Pooria A, Pourya A, Gheini A. Postoperative complications associated with coronary artery bypass graft surgery and their therapeutic interventions[J]. Future Cardiol, 2020, 16(5): 481–496. doi: 10.2217/fca-2019-0049
    [7]
    Zhang Y, Yang L, Zhang W, et al. Effect of volatile anesthetics on mortality and clinical outcomes in patients undergoing coronary artery bypass grafting: a meta-analysis of randomized clinical trials[J]. Minerva Anestesiol, 2020, 86(10): 1065–1078. doi: 10.23736/S0375-9393.20.14304-9
    [8]
    Landoni G, Lomivorotov VV, Nigro Neto C, et al. Volatile anesthetics versus total intravenous anesthesia for cardiac surgery[J]. N Engl J Med, 2019, 380(13): 1214–1225. doi: 10.1056/NEJMoa1816476
    [9]
    Ren S, Yu H, Guo Y, et al. Inhalation versus intravenous anesthesia for adults undergoing heart valve surgery: a systematic review and meta-analysis[J]. Minerva Anestesiol, 2019, 85(6): 665–675. doi: 10.23736/S0375-9393.19.13377-9
    [10]
    Bonanni A, Signori A, Alicino C, et al. Volatile anesthetics versus propofol for cardiac surgery with cardiopulmonary bypass: meta-analysis of randomized trials[J]. Anesthesiology, 2020, 132(6): 1429–1446. doi: 10.1097/ALN.0000000000003236
    [11]
    Swyers T, Redford D, Larson DF. Volatile anesthetic-induced preconditioning[J]. Perfusion, 2014, 29(1): 10–15. doi: 10.1177/0267659113503975
    [12]
    Yang J, Tang L, Zhang F, et al. Sevoflurane preconditioning promotes mesenchymal stem cells to relieve myocardial ischemia/reperfusion injury via TRPC6-induced angiogenesis[J]. Stem Cell Res Ther, 2021, 12(1): 584. doi: 10.1186/s13287-021-02649-3
    [13]
    Yiğit Özay H, Demir A, Balci E, et al. The effects of total intravenous and inhalation anesthesia maintenance on tissue oxygenation in coronary artery bypass graft surgery[J]. Eur Rev Med Pharmacol Sci, 2022, 26(12): 4279–4288. doi: 10.26355/EURREV_202206_29066
    [14]
    Larach DR, Schuler HG. Direct vasodilation by sevoflurane, isoflurane, and halothane alters coronary flow reserve in the isolated rat heart[J]. Anesthesiology, 1991, 75(2): 268–278. doi: 10.1097/00000542-199108000-00015
    [15]
    Johnson NP, Kirkeeide RL, Gould KL. Coronary steal: mechanisms of a misnomer[J]. J Am Heart Assoc, 2021, 10(13): e021000. doi: 10.1161/JAHA.121.021000
    [16]
    Nicoara A, Skubas N, Ad N, et al. Guidelines for the use of transesophageal echocardiography to assist with surgical decision-making in the operating room: a surgery-based approach: from the American society of echocardiography in collaboration with the society of cardiovascular anesthesiologists and the society of thoracic surgeons[J]. J Am Soc Echocardiogr, 2020, 33(6): 692–734. doi: 10.1016/j.echo.2020.03.002
    [17]
    Prempeh ABA, Scherman J, Swanevelder JL. Transesophageal echocardiography in minimally invasive cardiac surgery[J]. Curr Opin Anaesthesiol, 2020, 33(1): 83–91. doi: 10.1097/ACO.0000000000000807
    [18]
    Collier P, Phelan D, Klein A. A test in context: myocardial strain measured by speckle-tracking echocardiography[J]. J Am Coll Cardiol, 2017, 69(8): 1043–1056. doi: 10.1016/j.jacc.2016.12.012
    [19]
    Singh A, Voss WB, Lentz RW, et al. The diagnostic and prognostic value of echocardiographic strain[J]. JAMA Cardiol, 2019, 4(6): 580–588. doi: 10.1001/jamacardio.2019.1152
    [20]
    Klaeboe LG, Edvardsen T. Echocardiographic assessment of left ventricular systolic function[J]. J Echocardiogr, 2019, 17(1): 10–16. doi: 10.1007/s12574-018-0405-5
    [21]
    Lotti R, De Marzo V, Della Bona R, et al. Speckle-tracking echocardiography: state of art and its applications[J]. Minerva Med, 2023, 114(4): 500–515. doi: 10.23736/S0026-4806.21.07317-1
    [22]
    Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging[J]. J Am Soc Echocardiogr, 2015, 28(1): 1–39.e14. doi: 10.1016/j.echo.2014.10.003
    [23]
    Baumgartner H, Hung J, Bermejo J, et al. Recommendations on the echocardiographic assessment of aortic valve stenosis: a focused update from the European Association of Cardiovascular Imaging and the American Society of Echocardiography[J]. Eur Heart J Cardiovasc Imaging, 2017, 18(3): 254–275. doi: 10.1093/ehjci/jew335
    [24]
    He L, Li X, Jiang J, et al. Effect of volatile anesthesia versus total intravenous anesthesia on postoperative pulmonary complications in patients undergoing cardiac surgery: a randomized clinical trial[J]. J Cardiothorac Vasc Anesth, 2022, 36(10): 3758–3765. doi: 10.1053/j.jvca.2022.06.014
    [25]
    Pastore MC, Mandoli GE, Contorni F, et al. Speckle tracking echocardiography: early predictor of diagnosis and prognosis in coronary artery disease[J]. Biomed Res Int, 2021, 2021: 6685378. doi: 10.1155/2021/6685378
    [26]
    Chennakeshavallu GN, Gadhinglajkar S, Sreedhar R, et al. Comparison of effects of sevoflurane versus propofol on left ventricular longitudinal global and regional strain in patients undergoing on-pump coronary artery bypass grafting[J]. Ann Card Anaesth, 2022, 25(2): 188–195. doi: 10.4103/aca.aca_240_20
    [27]
    Ebrahimi F, Gharedaghi MH, Petrossian V, et al. Intraoperative assessment of coronary artery stenosis by 2D speckle-tracking echocardiography: the correlation between peak strain rate during early diastole and the severity of coronary artery stenosis in patients undergoing coronary artery bypass grafting[J]. J Cardiothorac Vasc Anesth, 2019, 33(10): 2652–2657. doi: 10.1053/j.jvca.2019.05.016
    [28]
    Lomivorotov VV, Efremov SM, Kirov MY, et al. Low-cardiac-output syndrome after cardiac surgery[J]. J Cardiothorac Vasc Anesth, 2017, 31(1): 291–308. doi: 10.1053/j.jvca.2016.05.029
    [29]
    Zangrillo A, Lomivorotov VV, Pasyuga VV, et al. Effect of volatile anesthetics on myocardial infarction after coronary artery surgery: a post hoc analysis of a randomized trial[J]. J Cardiothorac Vasc Anesth, 2022, 36(8): 2454–2462. doi: 10.1053/j.jvca.2022.01.001
    [30]
    Iida H, Ohata H, Iida M, et al. Isoflurane and sevoflurane induce vasodilation of cerebral vessels via ATP-sensitive K+ channel activation[J]. Anesthesiology, 1998, 89(4): 954–960. doi: 10.1097/00000542-199810000-00020
    [31]
    Stowe DF, Kevin LG. Cardiac preconditioning by volatile anesthetic agents: a defining role for altered mitochondrial bioenergetics[J]. Antioxid Redox Signal, 2004, 6(2): 439–448. doi: 10.1089/152308604322899512
    [32]
    Jiang J, Li C, Li H, et al. Sevoflurane postconditioning affects post-ischaemic myocardial mitochondrial ATP-sensitive potassium channel function and apoptosis in ageing rats[J]. Clin Exp Pharmacol Physiol, 2016, 43(5): 552–561. doi: 10.1111/1440-1681.12565
    [33]
    Lindholm EE, Aune E, Frøland G, et al. Analysis of transthoracic echocardiographic data in major vascular surgery from a prospective randomised trial comparing sevoflurane and fentanyl with propofol and remifentanil anaesthesia[J]. Anaesthesia, 2014, 69(6): 558–572. doi: 10.1111/anae.12604
    [34]
    Kawamura T, Kadosaki M, Nara N, et al. Effects of sevoflurane on cytokine balance in patients undergoing coronary artery bypass graft surgery[J]. J Cardiothorac Vasc Anesth, 2006, 20(4): 503–508. doi: 10.1053/j.jvca.2006.01.011
    [35]
    Miyamoto Y, Feng G, Satomi S, et al. Phosphatidylinositol 3-kinase inhibition induces vasodilator effect of sevoflurane via reduction of Rho kinase activity[J]. Life Sci, 2017, 177: 20–26. doi: 10.1016/j.lfs.2017.04.005
    [36]
    Kersten JR, Brayer AP, Pagel PS, et al. Perfusion of ischemic myocardium during anesthesia with sevoflurane[J]. Anesthesiology, 1994, 81(4): 995–1004. doi: 10.1097/00000542-199410000-00027
  • Related Articles

    [1]Liping Cheng, He Jin, Tianheng Xiao, Xiaoyu Yang, Tingting Zhao, Eugene Yujun Xu. Human circBOULE RNAs as potential biomarkers for sperm quality and male infertility[J]. The Journal of Biomedical Research, 2024, 38(5): 473-484. DOI: 10.7555/JBR.37.20230296
    [2]Zhang Weifeng, Chen Han, Zhang Guoxin, Jin Guangfu. A nomogram for predicting lymph node metastasis in superficial esophageal squamous cell carcinoma[J]. The Journal of Biomedical Research, 2021, 35(5): 361-370. DOI: 10.7555/JBR.35.20210034
    [3]He Xi, Xie Wenxiu, Li Huiling, Cui Yiqiang, Wang Ya, Guo Xuejiang, Sha Jiahao. The testis-specifically expressed gene Trim69 is not essential for fertility in mice[J]. The Journal of Biomedical Research, 2021, 35(1): 47-60. DOI: 10.7555/JBR.34.20200069
    [4]Huang Lei, Lu Qun, Du Jiangbo, Lv Hong, Tao Shiyao, Chen Shiyao, Li Xiuzhu, Han Xiumei, Zhou Kun, Xu Bo, Liu Xiaoyu, Ma Hongxia, Xia Yankai, Jin Guangfu, Shen Hongbing, Ling Xiufeng, Hu Zhibin, Tan Jichun, Diao Feiyang. Cumulative live birth rates of in vitro fertilization/intracytoplasmic sperm injection after multiple complete cycles in China[J]. The Journal of Biomedical Research, 2020, 34(5): 361-368. DOI: 10.7555/JBR.34.20200035
    [5]Slimen Itaf Ben, Boubchir Larbi, Seddik Hassene. Epileptic seizure prediction based on EEG spikes detection of ictal-preictal states[J]. The Journal of Biomedical Research, 2020, 34(3): 162-169. DOI: 10.7555/JBR.34.20190097
    [6]Wang Le Yi, McKelvey George M., Wang Hong. Multi-outcome predictive modelling of anesthesia patients[J]. The Journal of Biomedical Research, 2019, 33(6): 430-434. DOI: 10.7555/JBR.33.20180088
    [7]Young-Joo Yi, S. Kamala-Kannan, Jeong-Muk Lim, Byung-Taek Oh, Sang-Myeong Lee. Effects of difructose dianhydride (DFA)-IV on in vitro fertilization in pigs[J]. The Journal of Biomedical Research, 2017, 31(5): 453-461. DOI: 10.7555/JBR.31.20160115
    [8]Anna Karolina Zuk, Xuesong Wen, Stephen Dilworth, Dong Li, Lucy Ghali. Modeling and validating three dimensional human normal cervix and cervical cancer tissues in vitro[J]. The Journal of Biomedical Research, 2017, 31(3): 240-247. DOI: 10.7555/JBR.31.20160150
    [9]Seo-jin Park, Kyoung-Ha So, Sang-Hwan Hyun. Effect of zeaxanthin on porcine embryonic development during in vitro maturation[J]. The Journal of Biomedical Research, 2017, 31(2): 154-161. DOI: 10.7555/JBR.31.20160079
    [10]Eliza Shrestha, Yuebo Yang, Xiaomao Li, Yu Zhang. Successful conservative management with methotrexate and mifepristone of cervical pregnancy[J]. The Journal of Biomedical Research, 2011, 25(1): 71-73. DOI: 10.1016/S1674-8301(11)60009-2

Catalog

    Figures(7)  /  Tables(4)

    Article Metrics

    Article views (336) PDF downloads (354) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return