Citation: | Hui Li, Yang Chen, Jianqin Niu, Chenju Yi. New insights into the immunologic role of oligodendrocyte lineage cells in demyelination diseases[J]. The Journal of Biomedical Research, 2022, 36(5): 343-352. DOI: 10.7555/JBR.36.20220016 |
This work was supported by research grants from Shenzhen Fundamental Research Program (Grants No. RCYX20200714114644167, JCYJ20190809161405495, and JCYJ20210324123212035), National Natural Science Foundation of China (Grants No. 81971309, 32170980, and 32070964), and Guangdong Basic and Applied Basic Research Foundation (Grants No. 2019A1515011333 and 2022B1515020012).
CLC number: R741.02, Document code: A
The authors reported no conflict of interests.
△These authors contributed equally to this work.
[1] |
Peters A. A fourth type of neuroglial cell in the adult central nervous system[J]. J Neurocytol, 2004, 33(3): 345–357. doi: 10.1023/B:NEUR.0000044195.64009.27
|
[2] |
Butt AM, Kiff J, Hubbard P, et al. Synantocytes: new functions for novel NG2 expressing glia[J]. J Neurocytol, 2002, 31(6-7): 551–565. doi: 10.1023/a:1025751900356
|
[3] |
Huang W, Bhaduri A, Velmeshev D, et al. Origins and proliferative states of human oligodendrocyte precursor cells[J]. Cell, 2020, 182(3): 594–608.e11. doi: 10.1016/j.cell.2020.06.027
|
[4] |
Sim FJ, Lang JK, Waldau B, et al. Complementary patterns of gene expression by human oligodendrocyte progenitors and their environment predict determinants of progenitor maintenance and differentiation[J]. Ann Neurol, 2006, 59(5): 763–779. doi: 10.1002/ana.20812
|
[5] |
Wilson HC, Scolding NJ, Raine CS. Co-expression of PDGF α receptor and NG2 by oligodendrocyte precursors in human CNS and multiple sclerosis lesions[J]. J Neuroimmunol, 2006, 176(1-2): 162–173. doi: 10.1016/j.jneuroim.2006.04.014
|
[6] |
Marques S, Zeisel A, Codeluppi S, et al. Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system[J]. Science, 2016, 352(6291): 1326–1329. doi: 10.1126/science.aaf6463
|
[7] |
Scolding NJ, Rayner PJ, Compston DAS. Identification of A2B5-positive putative oligodendrocyte progenitor cells and A2B5-positive astrocytes in adult human white matter[J]. Neuroscience, 1999, 89(1): 1–4. doi: 10.1016/S0306-4522(98)00548-X
|
[8] |
Fratangeli A, Parmigiani E, Fumagalli M, et al. The regulated expression, intracellular trafficking, and membrane recycling of the P2Y-like receptor GPR17 in Oli-neu oligodendroglial cells[J]. J Biol Chem, 2013, 288(7): 5241–5256. doi: 10.1074/jbc.M112.404996
|
[9] |
Basu R, Das Sarma J. Connexin 43/47 channels are important for astrocyte/oligodendrocyte cross-talk in myelination and demyelination[J]. J Biosci, 2018, 43(5): 1055–1068. doi: 10.1007/s12038-018-9811-0
|
[10] |
Xiao L, Ohayon D, McKenzie IA, et al. Rapid production of new oligodendrocytes is required in the earliest stages of motor-skill learning[J]. Nat Neurosci, 2016, 19(9): 1210–1217. doi: 10.1038/nn.4351
|
[11] |
Fard MK, van der Meer F, Sánchez P, et al. BCAS1 expression defines a population of early myelinating oligodendrocytes in multiple sclerosis lesions[J]. Sci Transl Med, 2017, 9(419): eaam7816. doi: 10.1126/scitranslmed.aam7816
|
[12] |
Radtke C, Sasaki M, Lankford KL, et al. CNPase expression in olfactory ensheathing cells[J]. J Biomed Biotechnol, 2011, 2011: 608496. doi: 10.1155/2011/608496
|
[13] |
Behrangi N, Lorenz P, Kipp M. Oligodendrocyte lineage marker expression in eGFP-GFAP transgenic mice[J]. J Mol Neurosci, 2021, 71(11): 2237–2248. doi: 10.1007/s12031-020-01771-w
|
[14] |
Dyer CA, Kendler A, Jean-Guillaume D, et al. GFAP-positive and myelin marker-positive glia in normal and pathologic environments[J]. J Neurosci Res, 2000, 60(3): 412–426. doi: 10.1002/(SICI)1097-4547(20000501)60:3<412::AID-JNR16>3.0.CO;2-E
|
[15] |
Takai Y, Misu T, Kaneko K, et al. Myelin oligodendrocyte glycoprotein antibody-associated disease: an immunopathological study[J]. Brain, 2020, 143(5): 1431–1446. doi: 10.1093/brain/awaa102
|
[16] |
Breitschopf H, Suchanek G, Gould RM, et al. In situ hybridization with digoxigenin-labeled probes: sensitive and reliable detection method applied to myelinating rat brain[J]. Acta Neuropathol, 1992, 84(6): 581–587. doi: 10.1007/BF00227734
|
[17] |
Chen Y, Aulia S, Tang BL. Myelin-associated glycoprotein-mediated signaling in central nervous system pathophysiology[J]. Mol Neurobiol, 2006, 34(2): 81–91. doi: 10.1385/MN:34:2:81
|
[18] |
Lee Y, Morrison BM, Li Y, et al. Oligodendroglia metabolically support axons and contribute to neurodegeneration[J]. Nature, 2012, 487(7408): 443–448. doi: 10.1038/nature11314
|
[19] |
Schirmer L, Möbius W, Zhao C, et al. Oligodendrocyte-encoded Kir4.1 function is required for axonal integrity[J]. Elife, 2018, 7: e36428. doi: 10.7554/eLife.36428
|
[20] |
Dulamea AO. Role of oligodendrocyte dysfunction in demyelination, remyelination and neurodegeneration in multiple sclerosis[J]. Adv Exp Med Biol, 2017, 958: 91–127. doi: 10.1007/978-3-319-47861-6_7
|
[21] |
Duncan GJ, Manesh SB, Hilton BJ, et al. The fate and function of oligodendrocyte progenitor cells after traumatic spinal cord injury[J]. Glia, 2020, 68(2): 227–245. doi: 10.1002/glia.23706
|
[22] |
Niu J, Tsai HH, Hoi KK, et al. Aberrant oligodendroglial-vascular interactions disrupt the blood-brain barrier, triggering CNS inflammation[J]. Nat Neurosci, 2019, 22(5): 709–718. doi: 10.1038/s41593-019-0369-4
|
[23] |
Nishiyama A, Komitova M, Suzuki R, et al. Polydendrocytes (NG2 cells): multifunctional cells with lineage plasticity[J]. Nat Rev Neurosci, 2009, 10(1): 9–22. doi: 10.1038/nrn2495
|
[24] |
Glezer I, Lapointe A, Rivest S. Innate immunity triggers oligodendrocyte progenitor reactivity and confines damages to brain injuries[J]. FASEB J, 2006, 20(6): 750–752. doi: 10.1096/fj.05-5234fje
|
[25] |
Falcão AM, van Bruggen D, Marques S, et al. Disease-specific oligodendrocyte lineage cells arise in multiple sclerosis[J]. Nat Med, 2018, 24(12): 1837–1844. doi: 10.1038/s41591-018-0236-y
|
[26] |
Baxi EG, DeBruin J, Tosi DM, et al. Transfer of myelin-reactive Th17 cells impairs endogenous remyelination in the central nervous system of cuprizone-fed mice[J]. J Neurosci, 2015, 35(22): 8626–8639. doi: 10.1523/JNEUROSCI.3817-14.2015
|
[27] |
Chang A, Nishiyama A, Peterson J, et al. NG2-positive oligodendrocyte progenitor cells in adult human brain and multiple sclerosis lesions[J]. J Neurosci, 2000, 20(17): 6404–6412. doi: 10.1523/JNEUROSCI.20-17-06404.2000
|
[28] |
Maheshwari A, Janssens K, Bogie J, et al. Local overexpression of interleukin-11 in the central nervous system limits demyelination and enhances remyelination[J]. Mediators Inflamm, 2013, 2013: 685317. doi: 10.1155/2013/685317
|
[29] |
Rodgers JM, Robinson AP, Rosler ES, et al. IL-17A activates ERK1/2 and enhances differentiation of oligodendrocyte progenitor cells[J]. Glia, 2015, 63(5): 768–779. doi: 10.1002/glia.22783
|
[30] |
Choi EH, Xu Y, Medynets M, et al. Activated T cells induce proliferation of oligodendrocyte progenitor cells via release of vascular endothelial cell growth factor-A[J]. Glia, 2018, 66(11): 2503–2513. doi: 10.1002/glia.23501
|
[31] |
Moore CS, Cui Q, Warsi NM, et al. Direct and indirect effects of immune and central nervous system-resident cells on human oligodendrocyte progenitor cell differentiation[J]. J Immunol, 2015, 194(2): 761–772. doi: 10.4049/jimmunol.1401156
|
[32] |
Healy LM, Perron G, Won SY, et al. Differential transcriptional response profiles in human myeloid cell populations[J]. Clin Immunol, 2018, 189: 63–74. doi: 10.1016/j.clim.2016.04.006
|
[33] |
Kirby L, Jin J, Cardona JG, et al. Oligodendrocyte precursor cells present antigen and are cytotoxic targets in inflammatory demyelination[J]. Nat Commun, 2019, 10(1): 3887. doi: 10.1038/s41467-019-11638-3
|
[34] |
Lisak RP, Benjamins JA, Nedelkoska L, et al. Secretory products of multiple sclerosis B cells are cytotoxic to oligodendroglia in vitro[J]. J Neuroimmunol, 2012, 246(1-2): 85–95. doi: 10.1016/j.jneuroim.2012.02.015
|
[35] |
Tirotta E, Ransohoff RM, Lane TE. CXCR2 signaling protects oligodendrocyte progenitor cells from IFN-γ/CXCL10-mediated apoptosis[J]. Glia, 2011, 59(10): 1518–1528. doi: 10.1002/glia.21195
|
[36] |
Piatek P, Namiecinska M, Domowicz M, et al. Multiple sclerosis CD49d+CD154+ As myelin-specific lymphocytes induced during remyelination[J]. Cells, 2020, 9(1): 15. doi: 10.3390/cells9010015
|
[37] |
Piatek P, Namiecinska M, Domowicz M, et al. MS CD49d+CD154+ lymphocytes reprogram oligodendrocytes into immune reactive cells affecting CNS regeneration[J]. Cells, 2019, 8(12): 1508. doi: 10.3390/cells8121508
|
[38] |
Melero-Jerez C, Fernández-Gómez B, Lebrón-Galán R, et al. Myeloid-derived suppressor cells support remyelination in a murine model of multiple sclerosis by promoting oligodendrocyte precursor cell survival, proliferation, and differentiation[J]. Glia, 2021, 69(4): 905–924. doi: 10.1002/glia.23936
|
[39] |
Rone MB, Cui Q, Fang J, et al. Oligodendrogliopathy in multiple sclerosis: low glycolytic metabolic rate promotes oligodendrocyte survival[J]. J Neurosci, 2016, 36(17): 4698–4707. doi: 10.1523/JNEUROSCI.4077-15.2016
|
[40] |
Tsiperson V, Huang Y, Bagayogo I, et al. Brain-derived neurotrophic factor deficiency restricts proliferation of oligodendrocyte progenitors following cuprizone-induced demyelination[J]. ASN Neuro, 2015, 7(1): 1759091414566878. doi: 10.1177/1759091414566878
|
[41] |
Moyon S, Dubessy AL, Aigrot MS, et al. Demyelination causes adult CNS progenitors to revert to an immature state and express immune cues that support their migration[J]. J Neurosci, 2015, 35(1): 4–20. doi: 10.1523/JNEUROSCI.0849-14.2015
|
[42] |
El-Behi M, Ciric B, Dai H, et al. The encephalitogenicity of TH17 cells is dependent on IL-1- and IL-23-induced production of the cytokine GM-CSF[J]. Nat Immunol, 2011, 12(6): 568–575. doi: 10.1038/ni.2031
|
[43] |
Li X, Yao W, Yuan Y, et al. Targeting of tumour-infiltrating macrophages via CCL2/CCR2 signalling as a therapeutic strategy against hepatocellular carcinoma[J]. Gut, 2017, 66(1): 157–167. doi: 10.1136/gutjnl-2015-310514
|
[44] |
Sierra-Filardi E, Nieto C, Domínguez-Soto Á, et al. CCL2 shapes macrophage polarization by GM-CSF and M-CSF: identification of CCL2/CCR2-dependent gene expression profile[J]. J Immunol, 2014, 192(8): 3858–3867. doi: 10.4049/jimmunol.1302821
|
[45] |
Wang S, Chen L. Co-signaling molecules of the B7-CD28 family in positive and negative regulation of T lymphocyte responses[J]. Microbes Infect, 2004, 6(8): 759–766. doi: 10.1016/j.micinf.2004.03.007
|
[46] |
Gaffen SL, Jain R, Garg AV, et al. The IL-23-IL-17 immune axis: from mechanisms to therapeutic testing[J]. Nat Rev Immunol, 2014, 14(9): 585–600. doi: 10.1038/nri3707
|
[47] |
Cannella B, Raine CS. Multiple sclerosis: cytokine receptors on oligodendrocytes predict innate regulation[J]. Ann Neurol, 2004, 55(1): 46–57. doi: 10.1002/ana.10764
|
[48] |
Kummer JA, Broekhuizen R, Everett H, et al. Inflammasome components NALP 1 and 3 show distinct but separate expression profiles in human tissues suggesting a site-specific role in the inflammatory response[J]. J Histochem Cytochem, 2007, 55(5): 443–452. doi: 10.1369/jhc.6A7101.2006
|
[49] |
Balabanov R, Strand K, Goswami R, et al. Interferon-γ-oligodendrocyte interactions in the regulation of experimental autoimmune encephalomyelitis[J]. J Neurosci, 2007, 27(8): 2013–2024. doi: 10.1523/JNEUROSCI.4689-06.2007
|
[50] |
Lee EY, Lee ZH, Song YW. CXCL10 and autoimmune diseases[J]. Autoimmun Rev, 2009, 8(5): 379–383. doi: 10.1016/j.autrev.2008.12.002
|
[51] |
Maurer M, von Stebut E. Macrophage inflammatory protein-1[J]. Int J Biochem Cell Biol, 2004, 36(10): 1882–1886. doi: 10.1016/j.biocel.2003.10.019
|
[52] |
Marques RE, Guabiraba R, Russo RC, et al. Targeting CCL5 in inflammation[J]. Expert Opin Ther Targets, 2013, 17(12): 1439–1460. doi: 10.1517/14728222.2013.837886
|
[53] |
Bergsteindottir K, Brennan A, Jessen KR, et al. In the presence of dexamethasone, gamma interferon induces rat oligodendrocytes to express major histocompatibility complex class Ⅱ molecules[J]. Proc Natl Acad Sci U S A, 1992, 89(19): 9054–9058. doi: 10.1073/pnas.89.19.9054
|
[54] |
Williams A, Piaton G, Aigrot MS, et al. Semaphorin 3A and 3F: key players in myelin repair in multiple sclerosis?[J]. Brain, 2007, 130(Pt 10): 2554–2565. doi: 10.1093/brain/awm202
|
[55] |
Majed HH, Chandran S, Niclou SP, et al. A novel role for Sema3A in neuroprotection from injury mediated by activated microglia[J]. J Neurosci, 2006, 26(6): 1730–1738. doi: 10.1523/JNEUROSCI.0702-05.2006
|
[56] |
Peferoen L, Kipp M, van der Valk P, et al. Oligodendrocyte-microglia cross-talk in the central nervous system[J]. Immunology, 2014, 141(3): 302–313. doi: 10.1111/imm.12163
|
[57] |
Harrington EP, Bergles DE, Calabresi PA. Immune cell modulation of oligodendrocyte lineage cells[J]. Neurosci Lett, 2020, 715: 134601. doi: 10.1016/j.neulet.2019.134601
|
[58] |
Fitzner D, Schnaars M, van Rossum D, et al. Selective transfer of exosomes from oligodendrocytes to microglia by macropinocytosis[J]. J Cell Sci, 2011, 124(Pt 3): 447–458. doi: 10.1242/jcs.074088
|
[59] |
Frühbeis C, Fröhlich D, Kuo W, et al. Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte-neuron communication[J]. PLoS Biol, 2013, 11(7): e1001604. doi: 10.1371/journal.pbio.1001604
|
[60] |
Wawrocki S, Druszczynska M, Kowalewicz-Kulbat M, et al. Interleukin 18 (IL-18) as a target for immune intervention[J]. Acta Biochim Pol, 2016, 63(1): 59–63. doi: 10.18388/abp.2015_1153
|
[61] |
Kawanokuchi J, Mizuno T, Takeuchi H, et al. Production of interferon-γ by microglia[J]. Mult Scler, 2006, 12(5): 558–564. doi: 10.1177/1352458506070763
|
[62] |
Koning N, Swaab DF, Hoek RM, et al. Distribution of the immune inhibitory molecules CD200 and CD200R in the normal central nervous system and multiple sclerosis lesions suggests neuron-glia and glia-glia interactions[J]. J Neuropathol Exp Neurol, 2009, 68(2): 159–167. doi: 10.1097/NEN.0b013e3181964113
|
[63] |
Greenwald RJ, Freeman GJ, Sharpe AH. The B7 family revisited[J]. Annu Rev Immunol, 2005, 23: 515–548. doi: 10.1146/annurev.immunol.23.021704.115611
|
[64] |
Nakanishi K, Yoshimoto T, Tsutsui H, et al. Interleukin-18 is a unique cytokine that stimulates both Th1 and Th2 responses depending on its cytokine milieu[J]. Cytokine Growth Factor Rev, 2001, 12(1): 53–72. doi: 10.1016/S1359-6101(00)00015-0
|
[65] |
Stober D, Schirmbeck R, Reimann J. IL-12/IL-18-dependent IFN-γ release by murine dendritic cells[J]. J Immunol, 2001, 167(2): 957–965. doi: 10.4049/jimmunol.167.2.957
|
[66] |
Rodriguez-Galán MC, Bream JH, Farr A, et al. Synergistic effect of IL-2, IL-12, and IL-18 on thymocyte apoptosis and Th1/Th2 cytokine expression[J]. J Immunol, 2005, 174(5): 2796–2804. doi: 10.4049/jimmunol.174.5.2796
|
[67] |
Goncalves MB, Wu Y, Clarke E, et al. Regulation of myelination by exosome associated retinoic acid release from NG2-positive cells[J]. J Neurosci, 2019, 39(16): 3013–3027. doi: 10.1523/JNEUROSCI.2922-18.2019
|
[68] |
Chauhan P, Sheng WS, Hu S, et al. Differential cytokine-induced responses of polarized microglia[J]. Brain Sci, 2021, 11(11): 1482. doi: 10.3390/brainsci11111482
|
[69] |
Janowski AM, Colegio OR, Hornick EE, et al. NLRC4 suppresses melanoma tumor progression independently of inflammasome activation[J]. J Clin Invest, 2016, 126(10): 3917–3928. doi: 10.1172/JCI86953
|
[70] |
Sullivan CD, Geisert EE Jr. Expression of rat target of the antiproliferative antibody (TAPA) in the developing brain[J]. J Comp Neurol, 1998, 396(3): 366–380. doi: 10.1002/(SICI)1096-9861(19980706)396:3<366::AID-CNE7>3.0.CO;2-0
|
[71] |
Mela A, Goldman JE. The tetraspanin KAI1/CD82 is expressed by late-lineage oligodendrocyte precursors and may function to restrict precursor migration and promote oligodendrocyte differentiation and myelination[J]. J Neurosci, 2009, 29(36): 11172–11181. doi: 10.1523/JNEUROSCI.3075-09.2009
|
[72] |
Szöllósi J, Horejsí V, Bene L, et al. Supramolecular complexes of MHC class Ⅰ, MHC class Ⅱ, CD20, and tetraspan molecules (CD53, CD81, and CD82) at the surface of a B cell line JY[J]. J Immunol, 1996, 157(7): 2939–2946. https://pubmed.ncbi.nlm.nih.gov/8816400/
|
[73] |
Engering A, Pieters J. Association of distinct tetraspanins with MHC class Ⅱ molecules at different subcellular locations in human immature dendritic cells[J]. Int Immunol, 2001, 13(2): 127–134. doi: 10.1093/intimm/13.2.127
|
[74] |
Gitik M, Liraz-Zaltsman S, Oldenborg PA, et al. Myelin down-regulates myelin phagocytosis by microglia and macrophages through interactions between CD47 on myelin and SIRPα (signal regulatory protein-α) on phagocytes[J]. J Neuroinflammation, 2011, 8: 24. doi: 10.1186/1742-2094-8-24
|
[75] |
Dowling P, Shang G, Raval S, et al. Involvement of the CD95 (APO-1/Fas) receptor/ligand system in multiple sclerosis brain[J]. J Exp Med, 1996, 184(4): 1513–1518. doi: 10.1084/jem.184.4.1513
|
[76] |
Choi C, Benveniste EN. Fas ligand/Fas system in the brain: regulator of immune and apoptotic responses[J]. Brain Res Rev, 2004, 44(1): 65–81. doi: 10.1016/j.brainresrev.2003.08.007
|
[77] |
Srivastava T, Diba P, Dean JM, et al. A TLR/AKT/FoxO3 immune tolerance-like pathway disrupts the repair capacity of oligodendrocyte progenitors[J]. J Clin Invest, 2018, 128(5): 2025–2041. doi: 10.1172/JCI94158
|
[78] |
Boccazzi M, Van Steenwinckel J, Schang AL, et al. The immune-inflammatory response of oligodendrocytes in a murine model of preterm white matter injury: the role of TLR3 activation[J]. Cell Death Dis, 2021, 12(2): 166. doi: 10.1038/s41419-021-03446-9
|
[79] |
Fernández-Castañeda A, Chappell MS, Rosen DA, et al. The active contribution of OPCs to neuroinflammation is mediated by LRP1[J]. Acta Neuropathol, 2020, 139(2): 365–382. doi: 10.1007/s00401-019-02073-1
|
[80] |
Kang Z, Wang C, Zepp J, et al. Act1 mediates IL-17-induced EAE pathogenesis selectively in NG2+ glial cells[J]. Nat Neurosci, 2013, 16(10): 1401–1408. doi: 10.1038/nn.3505
|
[81] |
Zhang B, Liu C, Qian W, et al. Structure of the unique SEFIR domain from human interleukin 17 receptor A reveals a composite ligand-binding site containing a conserved α-helix for Act1 binding and IL-17 signaling[J]. Acta Crystallogr D Biol Crystallogr, 2014, 70(Pt 5): 1476–1483. doi: 10.1107/S1399004714005227
|
[82] |
Lindstrom SI, Sigurdardottir S, Zapadka TE, et al. Diabetes induces IL-17A-Act1-FADD-dependent retinal endothelial cell death and capillary degeneration[J]. J Diabetes Complications, 2019, 33(9): 668–674. doi: 10.1016/j.jdiacomp.2019.05.016
|
[83] |
Mullershausen F, Craveiro LM, Shin Y, et al. Phosphorylated FTY720 promotes astrocyte migration through sphingosine-1-phosphate receptors[J]. J Neurochem, 2007, 102(4): 1151–1161. doi: 10.1111/j.1471-4159.2007.04629.x
|
[84] |
Choi JW, Gardell SE, Herr DR, et al. FTY720 (fingolimod) efficacy in an animal model of multiple sclerosis requires astrocyte sphingosine 1-phosphate receptor 1 (S1P1) modulation[J]. Proc Natl Acad Sci U S A, 2011, 108(2): 751–756. doi: 10.1073/pnas.1014154108
|
[85] |
Miron VE, Jung CG, Kim HJ, et al. FTY720 modulates human oligodendrocyte progenitor process extension and survival[J]. Ann Neurol, 2008, 63(1): 61–71. doi: 10.1002/ana.21227
|
[86] |
Zhang J, Zhang ZG, Li Y, et al. Fingolimod treatment promotes proliferation and differentiation of oligodendrocyte progenitor cells in mice with experimental autoimmune encephalomyelitis[J]. Neurobiol Dis, 2015, 76: 57–66. doi: 10.1016/j.nbd.2015.01.006
|
[87] |
Lee DH, Linker RA. The role of myelin oligodendrocyte glycoprotein in autoimmune demyelination: a target for multiple sclerosis therapy?[J]. Expert Opin Ther Targets, 2012, 16(5): 451–462. doi: 10.1517/14728222.2012.677438
|
[88] |
Androutsou ME, Nteli A, Gkika A, et al. Characterization of asparagine deamidation in immunodominant myelin oligodendrocyte glycoprotein peptide potential immunotherapy for the treatment of multiple sclerosis[J]. Int J Mol Sci, 2020, 21(20): 7566. doi: 10.3390/ijms21207566
|
[89] |
Peng Y, Zhu F, Chen Z, et al. Characterization of myelin oligodendrocyte glycoprotein (MOG)35–55-specific CD8+ T cells in experimental autoimmune encephalomyelitis[J]. Chin Med J (Engl), 2019, 132(24): 2934–2940. doi: 10.1097/CM9.0000000000000551
|
[90] |
Kammona O, Kiparissides C. Recent advances in antigen-specific immunotherapies for the treatment of multiple sclerosis[J]. Brain Sci, 2020, 10(6): 333. doi: 10.3390/brainsci10060333
|
[1] | Yingzhou Tu, Sen Wang, Haoran Wang, Peiyao Zhang, Mengyu Wang, Cunming Liu, Chun Yang, Riyue Jiang. The role of perioperative factors in the prognosis of cancer patients: A coin has two sides[J]. The Journal of Biomedical Research. DOI: 10.7555/JBR.38.20240164 |
[2] | Rampes Sanketh, Ma Katie, Divecha Yasmin Amy, Alam Azeem, Ma Daqing. Postoperative sleep disorders and their potential impacts on surgical outcomes[J]. The Journal of Biomedical Research, 2020, 34(4): 271-280. DOI: 10.7555/JBR.33.20190054 |
[3] | Huan Liu, Shijiang Zhang, Yongfeng Shao, Xiaohu Lu, Weidong Gu, Buqing Ni, Qun Gu, Junjie Du. Biomechanical characterization of a novel ring connector for sutureless aortic anastomosis[J]. The Journal of Biomedical Research, 2018, 32(6): 454-460. DOI: 10.7555/JBR.31.20170011 |
[4] | Minbo Zang, Qiao Zhou, Yunfei Zhu, Mingxi Liu, Zuomin Zhou. Effects of chemotherapeutic agent bendamustine for nonhodgkin lymphoma on spermatogenesis in mice[J]. The Journal of Biomedical Research, 2018, 32(6): 442-453. DOI: 10.7555/JBR.31.20170023 |
[5] | Kaibo Lin, Shikun Zhang, Jieli Chen, Ding Yang, Mengyi Zhu, Eugene Yujun Xu. Generation and functional characterization of a conditional Pumilio2 null allele[J]. The Journal of Biomedical Research, 2018, 32(6): 434-441. DOI: 10.7555/JBR.32.20170117 |
[6] | Fengzhen Wang, Mingwan Zhang, Dongsheng Zhang, Yuan Huang, Li Chen, Sunmin Jiang, Kun Shi, Rui Li. Preparation, optimization, and characterization of chitosancoated solid lipid nanoparticles for ocular drug delivery[J]. The Journal of Biomedical Research, 2018, 32(6): 411-423. DOI: 10.7555/JBR.32.20160170 |
[7] | Christopher J. Danford, Zemin Yao, Z. Gordon Jiang. Non-alcoholic fatty liver disease: a narrative review of genetics[J]. The Journal of Biomedical Research, 2018, 32(6): 389-400. DOI: 10.7555/JBR.32.20180045 |
[8] | Zhaosheng Jin, Ka Chun Suen, Daqing Ma. Perioperative “remote” acute lung injury: recent update[J]. The Journal of Biomedical Research, 2017, 31(3): 197-212. DOI: 10.7555/JBR.31.20160053 |
[9] | Dominik Choromanski, Joel Frederick, George Michael Mckelvey, Hong Wang. Intraoperative patient information handover between anesthesia providers[J]. The Journal of Biomedical Research, 2014, 28(5): 383-387. DOI: 10.7555/JBR.28.20140001 |
[10] | Sundeep?S.?Tumber, Hong?Liu. Epidural abscess after multiple lumbar punctures for labour epidural catheter placement[J]. The Journal of Biomedical Research, 2010, 24(4): 332-335. DOI: 10.1016/S1674-8301(10)60046-2 |