• ISSN 1674-8301
  • CN 32-1810/R
Volume 35 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
Gheorghiu Eugen. Detection of pathogenic bacteria by magneto-immunoassays: a review[J]. The Journal of Biomedical Research, 2021, 35(4): 277-283. doi: 10.7555/JBR.34.20200123
Citation: Gheorghiu Eugen. Detection of pathogenic bacteria by magneto-immunoassays: a review[J]. The Journal of Biomedical Research, 2021, 35(4): 277-283. doi: 10.7555/JBR.34.20200123

Detection of pathogenic bacteria by magneto-immunoassays: a review

doi: 10.7555/JBR.34.20200123
More Information
  • Corresponding author: Eugen Gheorghiu, International Centre of Biodynamics, 1B Intrarea Portocalelor, Bucharest 060101, Romania. Tel/Fax: +40-213104354/+40-213104361, E-mail: egheorghiu@biodyn.ro
  • Received: 2020-07-27
  • Revised: 2020-10-08
  • Accepted: 2020-11-06
  • Published: 2020-12-25
  • Issue Date: 2021-07-28
  • Magnetic particle-based immunoassays are widely used in microbiology-related assays for both microbial capture, separation, analysis, and detection. Besides facilitating sample operation, the implementation of micro-to-nanometer scale magnetic beads as a solid support potentially shortens the incubation time (for magnetic immuno capture) from several hours to less than an hour. Analytical technologies based on magnetic beads offer a rapid, effective and inexpensive way to separate and concentrate the target analytes prior to detection. Magneto-immuno separation uses magnetic particles coated with specific antibodies to capture target microorganisms, bear the corresponding antigens, and subsequently separate them from the sample matrix in a magnetic field. The method has been proven effective in separating various types of pathogenic bacteria from environmental water samples and in eliminating background interferences. Magnetic particles are often used to capture target cells (pathogenic bacteria) from samples. In most commercially available assays, the actual identification and quantitation of the captured cells is then performed by classical microbiological assays. This review highlights the most sensitive analytic methods (i.e., long-range surface plasmon resonance and electrochemical impedance spectroscopy) to detect magnetically tagged bacteria in conjunction with magnetic actuation.


  • loading
  • [1]
    Zang P, Gong AJ, Zhang PR, et al. Targeting druggable enzymome by exploiting natural medicines: an in silicoin vitro integrated approach to combating multidrug resistance in bacterial infection[J]. Pharm Biol, 2016, 54(4): 604–618. doi: 10.3109/13880209.2015.1068338
    Aly MA, Domig KJ, Kneifel W, et al. Immunogold nanoparticles for rapid plasmonic detection of C. sakazakii[J]. Sensors, 2018, 18(7): 2028. doi: 10.3390/s18072028
    Yamamoto Y. PCR in diagnosis of infection: detection of bacteria in cerebrospinal fluids[J]. Clin Diagn Lab Immunol, 2002, 9(3): 508–514. doi: 10.1128/cdli.9.3.508-514.2002
    Abram TJ, Cherukury H, Ou CY, et al. Rapid bacterial detection and antibiotic susceptibility testing in whole blood using one-step, high throughput blood digital PCR[J]. Lab Chip, 2020, 20(3): 477–489. doi: 10.1039/C9LC01212E
    Reimhult E. Nanoparticle-triggered release from lipid membrane vesicles[J]. New Biotechnol, 2015, 32(6): 665–672. doi: 10.1016/j.nbt.2014.12.002
    Cudjoe KS. Immunomagnetic particle-based techniques: overview[M]//Batt CA, Tortorello ML. Encyclopedia of Food Microbiology. 2nd ed. London: Academic Press, 2014: 351–357.
    Yu HW, Halonen MJ, Pepper IL. Chapter 12 - immunological methods[M]//Pepper IL, Gerba CP, Gentry TJ. Environmental Microbiology. 3rd ed. San Diego: Academic Press, 2015: 245–269.
    David S, Polonschii C, Gheorghiu M, et al. Assessment of pathogenic bacteria using periodic actuation[J]. Lab Chip, 2013, 13(16): 3192–3198. doi: 10.1039/c3lc50411e
    Lee JJ, Jeong KJ, Hashimoto M, et al. Synthetic ligand-coated magnetic nanoparticles for microfluidic bacterial separation from blood[J]. Nano Lett, 2014, 14(1): 1–5. doi: 10.1021/nl3047305
    Gijs MAM, Lacharme F, Lehmann U. Microfluidic applications of magnetic particles for biological analysis and catalysis[J]. Chem Rev, 2010, 110(3): 1518–1563. doi: 10.1021/cr9001929
    Rapoport E, Montana D, Beach GSD. Integrated capture, transport, and magneto-mechanical resonant sensing of superparamagnetic microbeads using magnetic domain walls[J]. Lab Chip, 2012, 12(21): 4433–4440. doi: 10.1039/c2lc40715a
    Ha Y, Ko S, Kim I, et al. Recent advances incorporating superparamagnetic nanoparticles into immunoassays[J]. ACS Appl Nano Mater, 2018, 1(2): 512–521. doi: 10.1021/acsanm.7b00025
    Galkin OY, Besarab OB, Pysmenna MO, et al. Modern magnetic immunoassay: biophysical and biochemical aspects[J]. Regul Mech Biosyst, 2018, 9(1): 47–55. doi: 10.15421/021806
    Huang HT, Garu P, Li CH, et al. Magnetoresistive biosensors for direct detection of magnetic nanoparticle conjugated biomarkers on a chip[J]. SPIN, 2019, 9(2): 1940002. doi: 10.1142/S2010324719400022
    Kuma H, Oyamada H, Tsukamoto A, et al. Liquid phase immunoassays utilizing magnetic markers and SQUID magnetometer[J]. Clin Chem Lab Med, 2010, 48(9): 1263–1269. doi: 10.1515/CCLM.2010.259
    Gaster RS, Xu L, Han SJ, et al. Quantification of protein interactions and solution transport using high-density GMR sensor arrays[J]. Nat Nanotechnol, 2011, 6(5): 314–320. doi: 10.1038/nnano.2011.45
    Krishna VD, Wu K, Perez AM, et al. Giant magnetoresistance-based biosensor for detection of influenza a virus[J]. Front Microbiol, 2016, 7: 400. doi: 10.3389/fmicb.2016.00400
    Adem S, Jain S, Sveiven M, et al. Giant magnetoresistive biosensors for real-time quantitative detection of protease activity[J]. Sci Rep, 2020, 10(1): 7941. doi: 10.1038/s41598-020-62910-2
    Chen YP, Xianyu YL, Wang Y, et al. One-step detection of pathogens and viruses: combining magnetic relaxation switching and magnetic separation[J]. ACS Nano, 2015, 9(3): 3184–3191. doi: 10.1021/acsnano.5b00240
    Tanchou V. Review of methods for the rapid identification of pathogens in water samples, ERNCIP thematic area Chemical & Biological Risks in the Water Sector, Task7, deliverable1[R]. Luxembourg: Publications Office of the European Union, 2014: 1–38.
    Silva NFD, Magalhães JMCS, Freire C, et al. Electrochemical biosensors for Salmonella: state of the art and challenges in food safety assessment[J]. Biosens Bioelectron, 2018, 99: 667–682. doi: 10.1016/j.bios.2017.08.019
    Ahmed A, Rushworth JV, Hirst NA, et al. Biosensors for whole-cell bacterial detection[J]. Clin Microbiol Rev, 2014, 27(3): 631–646. doi: 10.1128/CMR.00120-13
    Wang Y, Knoll W, Dostalek J. Bacterial pathogen surface Plasmon resonance Biosensor advanced by long-range surface Plasmons and magnetic nanoparticle assays[J]. Anal Chem, 2012, 84(19): 8345–8350. doi: 10.1021/ac301904x
    Leva-Bueno J, Peyman SA, Millner PA. A review on impedimetric immunosensors for pathogen and biomarker detection[J]. Med Microbiol Immunol, 2020, 209(3): 343–362. doi: 10.1007/s00430-020-00668-0
    Choi JH, Lee JH, Son J, et al. Noble metal-assisted surface Plasmon resonance immunosensors[J]. Sensors, 2020, 20(4): 1003. doi: 10.3390/s20041003
    Zou F, Wang XX, Qi FJ, et al. Magneto-plamonic nanoparticles enhanced surface Plasmon resonance TB sensor based on recombinant gold binding antibody[J]. Sens Actuators B: Chem, 2017, 250: 356–363. doi: 10.1016/j.snb.2017.04.162
    Kim SH, Koh K. Functional dyes for surface Plasmon resonance-based sensing system[M]//Kim SH. Functional Dyes. Amsterdam: Elsevier, 2006: 185–213.
    Vlček J, Pištora J, Lesňák M. Design of plasmonic-waveguiding structures for sensor applications[J]. Nanomaterials, 2019, 9(9): 1227. doi: 10.3390/nano9091227
    Isaacs S, Abdulhalim I. long-range surface Plasmon resonance with ultra-high penetration depth for self-referenced sensing and ultra-low detection limit using diverging beam approach[J]. Appl Phys Lett, 2015, 106(19): 193701. doi: 10.1063/1.4921200
    Gheorghiu E. Characterizing cellular systems by means of dielectric spectroscopy[J]. BioElectroMagnetics, 1996, 17(6): 475–482. doi: 10.1002/(SICI)1521-186X(1996)17:6<475::AID-BEM7>3.0.CO;2-0
    Gheorghiu E, Asami K. Monitoring cell cycle by impedance spectroscopy: experimental and theoretical aspects[J]. Bioelectrochem Bioenerg, 1998, 45(2): 139–143. doi: 10.1016/S0302-4598(98)00084-1
    Gheorghiu M, Gersing E, Gheorghiu E. Quantitative analysis of impedance spectra of organs during ischemia[J]. Ann N Y Acad Sci, 1999, 873(1): 65–71. doi: 10.1111/j.1749-6632.1999.tb09450.x
    Vrinceanu D, Gheorghiu E. Shape effects on the dielectric behaviour of arbitrarily shaped particles with particular reference to biological cells[J]. Bioelectrochem Bioenerg, 1996, 40(2): 167–170. doi: 10.1016/0302-4598(96)05068-4
    Gheorghiu E. On the limits of ellipsoidal models when analyzing dielectric behavior of living cells emphasis on red blood cells[J]. Ann N Y Acad Sci, 1999, 873(1): 262–268. doi: 10.1111/j.1749-6632.1999.tb09474.x
    Gheorghiu E, Balut C, Gheorghiu M. Dielectric behaviour of gap junction connected cells: a microscopic approach[J]. Phys Med Biol, 2002, 47(2): 341–348. doi: 10.1088/0031-9155/47/2/312
    Sandu T, Vrinceanu D, Gheorghiu E. Linear dielectric response of clustered living cells[J]. Phys Rev E, 2010, 81(2): 021913. doi: 10.1103/PhysRevE.81.021913
    Vosika ZB, Lazovic GM, Misevic GN, et al. Fractional calculus model of electrical impedance applied to human skin[J]. PLoS One, 2013, 8(4): e59483. doi: 10.1371/journal.pone.0059483
    Gheorghiu M, Stănică L, Tegla MGG, et al. Cellular sensing platform with enhanced sensitivity based on optogenetic modulation of cell homeostasis[J]. Biosens Bioelectron, 2020, 154: 112003. doi: 10.1016/j.bios.2019.112003
    Gheorghiu M, Stanica L, Polonschii C, et al. Modulation of cellular reactivity for enhanced cell-based biosensing[J]. Anal Chem, 2020, 92(1): 806–814. doi: 10.1021/acs.analchem.9b03217
    Zhang FN, Wang SP, Yang YZ, et al. Imaging single bacterial cells with electro-optical impedance microscopy[J]. ACS Sens, 2020, . doi: 10.1021/acssensors.0c00751
    Giraud M, Delapierre FD, Wijkhuisen A, et al. Evaluation of in-flow magnetoresistive chip cell-counter as a diagnostic tool[J]. Biosensors, 2019, 9(3): 105. doi: 10.3390/bios9030105
    Grossman HL, Myers WR, Vreeland VJ, et al. Detection of bacteria in suspension by using a superconducting quantum interference device[J]. Proc Natl Acad Sci USA, 2004, 101(1): 129–134. doi: 10.1073/pnas.0307128101
    Jia F, Xu L, Yan WJ, et al. A magnetic relaxation switch aptasensor for the rapid detection of Pseudomonas aeruginosa using superparamagnetic nanoparticles[J]. Microchim Acta, 2017, 184(5): 1539–1545. doi: 10.1007/s00604-017-2142-2
    Liu X, Hu YX, Zheng S, et al. Surface Plasmon resonance immunosensor for fast, highly sensitive, and in situ detection of the magnetic nanoparticles-enriched Salmonella enteritidis[J]. Sens Actuators B: Chem, 2016, 230: 191–198. doi: 10.1016/j.snb.2016.02.043
    van Reenen A, de Jong AM, den Toonder JMJ, et al. Integrated lab-on-chip biosensing systems based on magnetic particle actuation–a comprehensive review[J]. Lab Chip, 2014, 14(12): 1966–1986. doi: 10.1039/C3LC51454D
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(1)

    Article Metrics

    Article views (274) PDF downloads(37) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint