• ISSN 1674-8301
  • CN 32-1810/R
Volume 35 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
Svistunenko Dimitri A.. EPR spectroscopy of whole blood and blood components: can we diagnose abnormalities?[J]. The Journal of Biomedical Research, 2021, 35(4): 294-300. doi: 10.7555/JBR.35.20210011
Citation: Svistunenko Dimitri A.. EPR spectroscopy of whole blood and blood components: can we diagnose abnormalities?[J]. The Journal of Biomedical Research, 2021, 35(4): 294-300. doi: 10.7555/JBR.35.20210011

EPR spectroscopy of whole blood and blood components: can we diagnose abnormalities?

doi: 10.7555/JBR.35.20210011
More Information
  • Corresponding author: Dimitri A. Svistunenko, School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK. Tel: +44-1206-873149, E-mail: svist@essex.ac.uk
  • Received: 2021-01-21
  • Revised: 2021-02-24
  • Accepted: 2021-03-10
  • Published: 2021-04-30
  • Issue Date: 2021-07-28
  • This mini-review gives a brief account of the emergence of the electron paramagnetic resonance (EPR) spectroscopy in the second half of the 20th century and reports the continuous wave EPR spectroscopy studies on human and animal blood. The question posed by this review is whether the EPR spectroscopy in the form it appeared 70 years ago is still able to provide useful information about different pathological conditions in humans, particularly in the area of diagnosis.


  • loading
  • [1]
    Zavoisky E. Spin-magnetic resonance in paramagnetics[J]. J Phys USSR, 1945, 9: 245–249. https://ci.nii.ac.jp/naid/10003989896/
    Zavoisky E. Paramagnetic relaxation of liquid solutions for perpendicular fields[J]. J Phys USSR, 1945, 9: 211–216. http://chiralqubit.eu/zavoisky-JoP-1945-IX-211
    Cummerow RL, Halliday D. Paramagnetic losses in two manganous salts[J]. Phys Rev, 1946, 70(5–6): 433. doi: 10.1103/PhysRev.70.433
    Bagguley DMS, Griffiths JHE. Paramagnetic resonance and magnetic energy levels in chrome alum[J]. Nature, 1947, 160(4068): 532–533. https://www.nature.com/articles/160532b0
    Whitmer CA, Weidner RT, Hsiang JS, et al. Magnetic resonance absorption in the chrome alums[J]. Phys Rev, 1948, 74(10): 1478–1484. doi: 10.1103/PhysRev.74.1478
    van Vleck JH. The dipolar broadening of magnetic resonance lines in crystals[J]. Phys Rev, 1948, 74(9): 1168–1183. doi: 10.1103/PhysRev.74.1168
    Lancaster FW, Gordy W. Paramagnetic resonance absorption of microwaves[J]. J Chem Phys, 1951, 19(9): 1181–1191. doi: 10.1063/1.1748499
    Commoner B, Townsend J, Pake GE. Free radicals in biological materials[J]. Nature, 1954, 174(4432): 689–691. doi: 10.1038/174689a0
    McConnell HM. Indirect hyperfine interactions in the paramagnetic resonance spectra of aromatic free radicals[J]. J Chem Phys, 1956, 24(4): 764–766. doi: 10.1063/1.1742605
    Fessenden RW, Schuler RH. Electron spin resonance studies of transient alkyl radicals[J]. J Chem Phys, 1963, 39(9): 2147–2195. doi: 10.1063/1.1701415
    Wittenberg BA, Kampa L, Wittenberg JB, et al. The electronic structure of protoheme proteins: II. An electron paramagnetic resonance and optical study of cytochrome c peroxidase and its derivatives[J]. J Biol Chem, 1968, 243(8): 1863–1870. doi: 10.1016/S0021-9258(18)93521-0
    Salmeen I, Palmer G. Electron paramagnetic resonance of beef-heart ferricytochrome c[J]. J Chem Phys, 1968, 48(5): 2049–2052. doi: 10.1063/1.1669014
    Blumberg WE, Peisach J, Wittenberg BA, et al. The electronic structure of protoheme proteins: I. An electron paramagnetic resonance and optical study of horseradish peroxidase and it's derivatives[J]. J Biol Chem, 1968, 243(8): 1854–1862. doi: 10.1016/S0021-9258(18)93520-9
    Scholes CP. Hyperfine structure from the four pyrrole nitrogens of Heme[J]. Proc Natl Acad Sci U S A, 1969, 62(2): 428–431. doi: 10.1073/pnas.62.2.428
    Gibson JF, Ingram DJE. Location of free electrons in porphin ring complexes[J]. Nature, 1956, 178(4538): 871–872. https://www.nature.com/articles/178871b0
    Gibson JF, Ingram DJE, Nicholls P. Free radical produced in the reaction of metmyoglobin with hydrogen peroxide[J]. Nature, 1958, 181(4620): 1398–1399. doi: 10.1038/1811398a0
    Kelso King N, Winfield ME. The mechanism of metmyoglobin oxidation[J]. J Biol Chem, 1963, 238(4): 1520–1528. doi: 10.1016/S0021-9258(18)81216-9
    Kelso King N, Looney FD, Winfield ME. Amino acid free radicals in oxidised metmyoglobin[J]. Biochim Biophys Acta Protein Struct, 1967, 133(1): 65–82. doi: 10.1016/0005-2795(67)90039-6
    Chetverikov AG. Studies on the electron paramagnetic resonance of biological specimens[J]. Biofizika (in Russian), 1964, 9: 678–680. https://pubmed.ncbi.nlm.nih.gov/14321904/
    Vanin AF, Chetverikov AG, Bliumenfel'd LA. The effect of lyophilization on the ESR spectrum of animal tissue[J]. Biofizika (in Russian), 1968, 13(1): 66–69. https://pubmed.ncbi.nlm.nih.gov/4298363/
    Emanuel NM, Saprin AN, Shabalkin VA, et al. Detection and investigation of a new type of ESR signal characteristic of some tumour tissues[J]. Nature, 1969, 222(5189): 165–167. doi: 10.1038/222165a0
    Ruuge EK, Kornienko IA. EPR spectra of frozen animal tissues[J]. Biofizika (in Russian), 1969, 14(4): 752–754. https://pubmed.ncbi.nlm.nih.gov/4319278/
    Ehrenberg A, Estabrook RW. Stabilization of catalase-ammonia complex in frozen solution[J]. Acta Chem Scand, 1966, 20(6): 1667–1672. http://actachemscand.org/pdf/acta_vol_20_p1667-1672.pdf
    Aisen P, Aasa R, Malmström BG, et al. Bicarbonate and the binding of iron to transferrin[J]. J Biol Chem, 1967, 242(10): 2484–2490. doi: 10.1016/S0021-9258(18)95988-0
    Aasa R, Aisen P. An electron paramagnetic resonance study of the iron and copper complexes of transferrin[J]. J Biol Chem, 1968, 243(9): 2399–2404. doi: 10.1016/S0021-9258(18)93488-5
    Yonetani T, Schleyer H. Studies on cytochrome c peroxidase. IX. The reaction of ferrimyoglobin with hydroperoxides and a comparison of peroxide-induced compounds of ferrimyoglobin and cytochrome c peroxidase[J]. J Biol Chem, 1967, 242(8): 1974–1979. doi: 10.1016/S0021-9258(18)96096-5
    Iwasaki M, Sakai Y. Change with temperature of the ESR spectra of peroxy radicals trapped in irradiated polytetrafluoroethylene[J]. J Polym Sci B Polym Phys, 1968, 6(1): 265–279. doi: 10.1002/pol.1968.160060117
    Toriyama K, Iwasaki M. Electron spin resonance spectra of peroxy radicals trapped in a γ-irradiated single crystal of trifluoroacetamide[J]. J Phys Chem, 1969, 73(8): 2663–2670. doi: 10.1021/j100842a034
    George P, Irvine DH. The reaction between metmyoglobin and hydrogen peroxide[J]. Biochem J, 1952, 52(3): 511–517. doi: 10.1042/bj0520511
    George P, Irvine DH. The higher oxidation state of metmyoglobin[J]. Biochem J, 1953, 53(4): xxv. doi: 10.1042/bj0530xxv
    Kobert R. Beiträge zur Kenntniss der Methämoglobine[J]. Pflugers Arch Gesamte Physiol Menschen Tiere, 1900, 82: 603–630. doi: 10.1007/BF01795645
    Peisach J, Blumberg WE, Wittenberg BA, et al. The electronic structure of protoheme proteins. III. Configuration of the heme and its ligands[J]. J Biol Chem, 1968, 243(8): 1871–1880. doi: 10.1016/S0021-9258(18)93522-2
    Peisach J, Blumberg WE, Wittenberg BA, et al. Hemoglobin A: an electron paramagnetic resonance study of the effects of interchain contacts on the heme symmetry of high-spin and low-spin derivatives of ferric alpha chains[J]. Proc Natl Acad Sci U S A, 1969, 63(3): 934–939. doi: 10.1073/pnas.63.3.934
    Swartz HM. Electron spin resonance studies of carcinogenesis[J]. Adv Cancer Res, 1972, 15: 227–252. doi: 10.1016/s0065-230x(08)60376-0
    Vanin AF, Burbaev D S, Voevodskaia NV, et al. Paramagnetic centers in lyophilized animal tissues[J]. Biofizika (in Russian), 1978, 23(6): 1046–1050. https://pubmed.ncbi.nlm.nih.gov/214159/
    Dodd NJ, Swartz HM. The nature of the ESR signal in lyophilized tissue and its relevance to malignancy[J]. Br J Cancer, 1984, 49(1): 65–71. doi: 10.1038/bjc.1984.10
    Svistunenko DA. Ascorbic acid radicals induced by the action of radiation in tissues from rat organs frozen at 77 K[J]. Izv Akad Nauk SSSR Biol (in Russian), 1990, (6): 827–834. https://pubmed.ncbi.nlm.nih.gov/1963628/
    Berliner LJ. The evolution of biomedical EPR (ESR)[J]. Biomed Spectrosc Imaging, 2016, 5(1): 5–26. https://content.iospress.com/articles/biomedical-spectroscopy-and-imaging/bsi128
    Sosan A, Svistunenko D, Straltsova D, et al. Engineered silver nanoparticles are sensed at the plasma membrane and dramatically modify the physiology of Arabidopsis thaliana plants[J]. Plant J, 2016, 85(2): 245–257. doi: 10.1111/tpj.13105
    Samuel EL, Marcano DC, Berka V, et al. Highly efficient conversion of superoxide to oxygen using hydrophilic carbon clusters[J]. Proc Natl Acad Sci USA, 2015, 112(8): 2343–2348. doi: 10.1073/pnas.1417047112
    Mosslehy W, Voskoboynikova N, Colbasevici A, et al. Conformational dynamics of sensory rhodopsin ii in nanolipoprotein and styrene-maleic acid lipid particles[J]. Photochem Photobiol, 2019, 95(5): 1195–1204. doi: 10.1111/php.13096
    Sahu ID, McCarrick RM, Troxel KR, et al. DEER EPR measurements for membrane protein structures via bifunctional spin labels and lipodisq nanoparticles[J]. Biochemistry, 2013, 52(38): 6627–6632. doi: 10.1021/bi4009984
    Cannistraro S, Ianzini F, Indovina PL. Electron spin resonance study on the molecular interaction between human ceruloplasmin, iron and transferrin[J]. Studia Biophys, 1981, 86(3): 163–175. https://www.researchgate.net/publication/292627945
    Musci G, Bonaccorsi di Patti MC, Carlini P, et al. Ceruloplasmin in human plasma and its relationships with the copper-albumin complex[J]. Eur J Biochem, 1992, 210(2): 635–640. doi: 10.1111/j.1432-1033.1992.tb17464.x
    Svistunenko DA, Patel RP, Voloshchenko SV, et al. The globin-based free radical of ferryl hemoglobin is detected in normal human blood[J]. J Biol Chem, 1997, 272(11): 7114–7121. doi: 10.1074/jbc.272.11.7114
    Svistunenko DA, Davies NA, Wilson MT, et al. Free radical in blood: a measure of haemoglobin autoxidation in vivo?[J]. J Chem Soc Perkin Trans, 1997, 2(12): 2539–2544. https://elibrary.ru/item.asp?id=938406
    Mikhailenko VM, Diomina EA, Muzalov II, et al. Nitric oxide coordinates development of genomic instability in realization of combined effect with ionizing radiation[J]. Exp Oncol, 2013, 35(1): 58–64. http://dspace.nbuv.gov.ua/handle/123456789/139134
    Svistunenko DA, Davies N, Brealey D, et al. Mitochondrial dysfunction in patients with severe sepsis: an EPR interrogation of individual respiratory chain components[J]. Biochim Biophys Acta Bioenerg, 2006, 1757: 262–272. doi: 10.1016/j.bbabio.2006.03.007
    Antholine WE, Vasquez-Vivar J, Quirk BJ, et al. Treatment of cells and tissues with chromate maximizes mitochondrial 2Fe2S EPR signals[J]. Int J Mol Sci, 2019, 20(5): 1143. doi: 10.3390/ijms20051143
    Kubiak T, Kezyminewski R, Dobosz B. EPR study of paramagnetic centers in human blood[J]. Curr Top Biophys, 2013, 36(1): 7–13. doi: 10.2478/ctb-2013-0006
    Yang AS, Gaffney BJ. Determination of relative spin concentration in some high-spin ferric proteins using E/D-distribution in electron paramagnetic resonance simulations[J]. Biophys J, 1987, 51(1): 55–67. doi: 10.1016/S0006-3495(87)83311-8
    Peisach J, Blumberg WE, Ogawa S, et al. The effects of protein conformation on the heme symmetry in high spin ferric heme proteins as studied by electron paramagnetic resonance[J]. J Biol Chem, 1971, 246(10): 3342–3355. doi: 10.1016/S0021-9258(18)62232-X
    Morse RH, Chan SI. Electron paramagnetic resonance studies of nitrosyl ferrous heme complexes. Determination of an equilibrium between two conformations[J]. J Biol Chem, 1980, 255(16): 7876–7882. doi: 10.1016/S0021-9258(19)43916-1
    Maruyama T, Kataoka N, Nagase S, et al. Identification of three-line electron spin resonance signal and its relationship to ascites tumors[J]. Cancer Res, 1971, 31(2): 179–184. https://pubmed.ncbi.nlm.nih.gov/4322750/
    Williams-Smith DL, Patel K. Induced changes in the electron paramagnetic resonance spectra of mammalian catalases[J]. Biochim Biophys Acta Protein Struct, 1975, 405(2): 243–252. doi: 10.1016/0005-2795(75)90091-4
    Burgova EN, Vanin AF, Demurov EA, et al. Effect of the hyperbaric oxygenation of animals and man on mitochondrial function in their tissues (based on EPR study data)[J]. Izv Akad Nauk SSSR Biol (in Russian), 1989, (2): 191–197. https://europepmc.org/article/med/2545758
    Stadler J, Bergonia HA, Disilvio M, et al. Nonheme iron-nitrosyl complex formation in rat hepatocytes: detection by electron paramagnetic resonance spectroscopy[J]. Arch Biochem Biophys, 1993, 302(1): 4–11. doi: 10.1006/abbi.1993.1173
    Lancaster Jr JR, Hibbs Jr JB. EPR demonstration of iron-nitrosyl complex formation by cytotoxic activated macrophages[J]. Proc Natl Acad Sci U S A, 1990, 87(3): 1223–1227. doi: 10.1073/pnas.87.3.1223
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (212) PDF downloads(22) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint