Citation: | Chen Fei, Li Yuancheng, Qin Na, Wang Fengliang, Du Jiangbo, Wang Cheng, Du Fangzhi, Jiang Tao, Jiang Yue, Dai Juncheng, Hu Zhibin, Lu Cheng, Shen Hongbing. RNA-seq analysis identified hormone-related genes associated with prognosis of triple negative breast cancer[J]. The Journal of Biomedical Research, 2020, 34(2): 129-138. DOI: 10.7555/JBR.34.20190111 |
[1] |
Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012[J]. CA Cancer J Clin, 2015, 65(2): 87–108. doi: 10.3322/caac.21262
|
[2] |
Chen WQ, Zheng RS, Baade PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2): 115–132. doi: 10.3322/caac.21338
|
[3] |
Fan L, Strasser-Weippl K, Li JJ, et al. Breast cancer in China[J]. Lancet Oncol, 2014, 15(7): E279–E289. doi: 10.1016/S1470-2045(13)70567-9
|
[4] |
Weigelt B, Reis-Filho JS. Histological and molecular types of breast cancer: is there a unifying taxonomy?[J]. Nat Rev Clin Oncol, 2009, 6(12): 718–730. doi: 10.1038/nrclinonc.2009.166
|
[5] |
Ni XJ, Zhao YC, Ma JJ, et al. Hypoxia-induced factor-1 alpha upregulates vascular endothelial growth factor C to promote lymphangiogenesis and angiogenesis in breast cancer patients[J]. J Biomed Res, 2013, 27(6): 478–485.
|
[6] |
Carey LA, Dees EC, Sawyer L, et al. The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes[J]. Clin Cancer Res, 2007, 13(8): 2329–2334. doi: 10.1158/1078-0432.CCR-06-1109
|
[7] |
Foulkes WD, Smith IE, Reis-Filho JS. Triple-negative breast cancer[J]. N Engl J Med, 2010, 363(20): 1938–1948. doi: 10.1056/NEJMra1001389
|
[8] |
Pogoda K, Niwińska A, Murawska M, et al. Analysis of pattern, time and risk factors influencing recurrence in triple-negative breast cancer patients[J]. Med Oncol, 2013, 30(1): 388. doi: 10.1007/s12032-012-0388-4
|
[9] |
Perou CM, Sørlie T, Eisen MB, et al. Molecular portraits of human breast tumours[J]. Nature, 2000, 406(6797): 747–752. doi: 10.1038/35021093
|
[10] |
Sørlie T, Perou CM, Tibshirani R, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications[J]. Proc Natl Acad Sci USA, 2001, 98(19): 10869–10874. doi: 10.1073/pnas.191367098
|
[11] |
Cardoso F, van't Veer LJ, Bogaerts J, et al. 70-gene signature as an aid to treatment decisions in early-stage breast cancer[J]. N Engl J Med, 2016, 375(8): 717–729. doi: 10.1056/NEJMoa1602253
|
[12] |
Paik S, Shak S, Tang G, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer[J]. N Engl J Med, 2004, 351(27): 2817–2826. doi: 10.1056/NEJMoa041588
|
[13] |
Reis-Filho JS, Pusztai L. Gene expression profiling in breast cancer: classification, prognostication, and prediction[J]. Lancet, 2011, 378(9805): 1812–1823. doi: 10.1016/S0140-6736(11)61539-0
|
[14] |
Kwa M, Makris A, Esteva FJ. Clinical utility of gene-expression signatures in early stage breast cancer[J]. Nat Rev Clin Oncol, 2017, 14(10): 595–610. doi: 10.1038/nrclinonc.2017.74
|
[15] |
Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics[J]. Nat Rev Genet, 2009, 10(1): 57–63. doi: 10.1038/nrg2484
|
[16] |
Eswaran J, Cyanam D, Mudvari P, et al. Transcriptomic landscape of breast cancers through mRNA sequencing[J]. Sci Rep, 2012, 2: 264. doi: 10.1038/srep00264
|
[17] |
Horvath A, Pakala SB, Mudvari P, et al. Novel insights into breast cancer genetic variance through RNA sequencing[J]. Sci Rep, 2013, 3: 2256. doi: 10.1038/srep02256
|
[18] |
Hammond MEH, Hayes DF, Dowsett M, et al. American Society of Clinical Oncology/College Of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer[J]. J Clin Oncol, 2010, 28(16): 2784–2795. doi: 10.1200/JCO.2009.25.6529
|
[19] |
Wolff AC, Hammond MEH, Hicks DG, et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update[J]. J Clin Oncol, 2013, 31(31): 3997–4013. doi: 10.1200/JCO.2013.50.9984
|
[20] |
Webb ES, Liu P, Baleeiro R, et al. Immune checkpoint inhibitors in cancer therapy[J]. J Biomed Res, 2018, 32(5): 317–326.
|
[21] |
Denkert C, Liedtke C, Tutt A, et al. Molecular alterations in triple-negative breast cancer-the road to new treatment strategies[J]. Lancet, 2017, 389(10087): 2430–2442. doi: 10.1016/S0140-6736(16)32454-0
|
[22] |
Louie MC, Sevigny MB. Steroid hormone receptors as prognostic markers in breast cancer[J]. Am J Cancer Res, 2017, 7(8): 1617–1636.
|
[23] |
Bleach R, McIlroy M. The divergent function of androgen receptor in breast cancer; analysis of steroid mediators and tumor intracrinology[J]. Front Endocrinol (Lausanne), 2018, 9: 594. doi: 10.3389/fendo.2018.00594
|
[24] |
The Endogenous Hormones and Breast Cancer Collaborative Group. Endogenous sex hormones and breast cancer in postmenopausal women: reanalysis of nine prospective studies[J]. J Natl Cancer Inst, 2002, 94(8): 606–616. doi: 10.1093/jnci/94.8.606
|
[25] |
McNamara KM, Oguro S, Omata F, et al. The presence and impact of estrogen metabolism on the biology of triple-negative breast cancer[J]. Breast Cancer Res Treat, 2017, 161(2): 213–227. doi: 10.1007/s10549-016-4050-2
|
[26] |
Song XZ, Zhang CW, Zhao MK, et al. Steroid Receptor Coactivator-3(SRC-3/AIB1) as a novel therapeutic target in triple negative breast cancer and its inhibition with a phospho-bufalin prodrug[J]. PLoS One, 2015, 10(10): e0140011. doi: 10.1371/journal.pone.0140011
|
[27] |
Liu T, Zhang H, Sun L, et al. FSIP1 binds HER2 directly to regulate breast cancer growth and invasiveness[J]. Proc Natl Acad Sci USA, 2017, 114(29): 7683–7688. doi: 10.1073/pnas.1621486114
|
[28] |
Chapman KB, Prendes MJ, Kidd JL, et al. Elevated expression of cancer/testis antigen FSIP1 in ER-positive breast tumors[J]. Biomark Med, 2013, 7(4): 601–611. doi: 10.2217/bmm.13.58
|
[29] |
Zhang H, Luo MN, Jin ZN, et al. Expression and clinicopathological significance of FSIP1 in breast cancer[J]. Oncotarget, 2015, 6(12): 10658–10666.
|
[30] |
Xu G, Dang CX. CMTM5 is downregulated and suppresses tumour growth in hepatocellular carcinoma through regulating PI3K-AKT signalling[J]. Cancer Cell Int, 2017, 17: 113. doi: 10.1186/s12935-017-0485-8
|
[31] |
Li H, Li J, Su Y, et al. A novel 3p22.3 gene CMTM7 represses oncogenic EGFR signaling and inhibits cancer cell growth[J]. Oncogene, 2014, 33(24): 3109–3118. doi: 10.1038/onc.2013.282
|
[32] |
Lefèvre L, Omeiri H, Drougat L, et al. Combined transcriptome studies identify AFF3 as a mediator of the oncogenic effects of β-catenin in adrenocortical carcinoma[J]. Oncogenesis, 2015, 4(7): e161. doi: 10.1038/oncsis.2015.20
|
[33] |
Shi YW, Zhao Y, Zhang YJ, et al. AFF3 upregulation mediates tamoxifen resistance in breast cancers[J]. J Exp Clin Cancer Res, 2018, 37(1): 254. doi: 10.1186/s13046-018-0928-7
|
[34] |
Prassas I, Diamandis EP. Novel therapeutic applications of cardiac glycosides[J]. Nat Rev Drug Discov, 2008, 7(11): 926–935. doi: 10.1038/nrd2682
|
[35] |
Bogdanov A, Moiseenko FV, Dubina M. Abnormal expression of ATP1A1 and ATP1A2 in breast cancer[J]. F1000Res, 2017, 6: 10. doi: 10.12688/f1000research.10481.1
|
[36] |
Dupuis J, Langenberg C, Prokopenko I, et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk[J]. Nat Genet, 2010, 42(2): 105–116. doi: 10.1038/ng.520
|
[37] |
Okada T, Nakamura M, Nishikawa J, et al. Identification of genes specifically methylated in Epstein-Barr virus-associated gastric carcinomas[J]. Cancer Sci, 2013, 104(10): 1309–1314. doi: 10.1111/cas.12228
|
[38] |
Modugno F, Knoll C, Kanbour-Shakir A, et al. A potential role for the estrogen-metabolizing cytochrome P450 enzymes in human breast carcinogenesis[J]. Breast Cancer Res Treat, 2003, 82(3): 191–197. doi: 10.1023/B:BREA.0000004376.21491.44
|
[1] | Izzatullo Ziyoyiddin o`g`li Abdullaev, Ulugbek Gapparjanovich Gayibov, Sirojiddin Zoirovich Omonturdiev, Sobirova Fotima Azamjonovna, Sabina Narimanovna Gayibova, Takhir Fatikhovich Aripov. Molecular pathways in cardiovascular disease under hypoxia: Mechanisms, biomarkers, and therapeutic targets[J]. The Journal of Biomedical Research. DOI: 10.7555/JBR.38.20240387 |
[2] | Jing Xue, Linwei Zhang, Jingxian Tao, Xuexue Xie, Xi Wang, Linlin Wu, Shuhu Du, Ninghua Tan, Yang Jin, Jianming Ju, Junting Fan, Jun Wang, Fei Huan, Rong Gao. A novel bellidifolin intervention mitigates nonalcoholic fatty liver disease-like changes induced by bisphenol F[J]. The Journal of Biomedical Research, 2024, 38(5): 451-463. DOI: 10.7555/JBR.37.20230169 |
[3] | Zhang Jingdong, Fox Howard, Xiong Huangui. Severer nodular lesion in white matter than in gray matter in simian immunodeficiency virus-infected monkey, but not closely correlated with viral infection[J]. The Journal of Biomedical Research, 2020, 34(4): 292-300. DOI: 10.7555/JBR.33.20180047 |
[4] | Du Haina, Song Guoxin, Fang Mingzhi, Shu Yongqian, Zhao Xin, Zhu Lingjun. A meta-analysis of caspase-8 -652 6N del polymorphism and digestive tract cancer risk[J]. The Journal of Biomedical Research, 2019, 33(3): 173-180. DOI: 10.7555/JBR.32.20160030 |
[5] | Xinglong Yang, Jingdong Zhang, Lian Duan, Huangui Xiong, Yanping Jiang, Houcheng Liang. Microglia activation mediated by toll-like receptor-4 impairs brain white matter tracts in rats[J]. The Journal of Biomedical Research, 2018, 32(2): 136-144. DOI: 10.7555/JBR.32.20170033 |
[6] | Ji-Youn Kim, Ho-Gyu Choi, Hae-Miru Lee, Geum-A Lee, Kyung-A Hwang, Kyung-Chul Choi. Effects of bisphenol compounds on the growth and epithelial mesenchymal transition of MCF-7 CV human breast cancer cells[J]. The Journal of Biomedical Research, 2017, 31(4): 358-369. DOI: 10.7555/JBR.31.20160162 |
[7] | Qian Liu, Cheng Xu, Guixiang Ji, Hui Liu, Wentao Shao, Chunlan Zhang, Aihua Gu, Peng Zhao. Effect of exposure to ambient PM2.5 pollution on the risk of respiratory tract diseases: a meta-analysis of cohort studies[J]. The Journal of Biomedical Research, 2017, 31(2): 130-142. DOI: 10.7555/JBR.31.20160071 |
[8] | Alexander E. Berezin, Alexander A. Kremzer, Tatayna A. Samura. Circulating thrombospondin-2 in patients with moderate-to-severe chronic heart failure due to coronary artery disease[J]. The Journal of Biomedical Research, 2016, 30(1): 32-39. DOI: 10.7555/JBR.30.20140025 |
[9] | Yang Zhou, Ouyang Ling, Li Bo. Expression and significance of lysyl oxidase-like 1 and fibulin-5 in the cardinal ligament tissue of patients with pelvic floor dysfunction[J]. The Journal of Biomedical Research, 2013, 27(1): 23-28. DOI: 10.7555/JBR.27.20110142 |
[10] | Jing Cai, Yanhui Sheng, Shijiang Zhang, Wei Sun, Rong Yang, Liping Miao, Xiangqing Kong. Preliminary feasibility and hemodynamic performance of a newly-developed self-expanding bioprosthesis and 16-F delivery system in transcatheter aortic valve implantation in sheep[J]. The Journal of Biomedical Research, 2012, 26(3): 211-218. DOI: 10.7555/JBR.26.20120011 |
1. | Lombard L, Sandoval-Denis M, Lamprecht SC, et al. Epitypification of Fusarium oxysporum - clearing the taxonomic chaos. Persoonia, 2019, 43: 1-47. DOI:10.3767/persoonia.2019.43.01 |
2. | Urbaniak C, van Dam P, Zaborin A, et al. Genomic Characterization and Virulence Potential of Two Fusarium oxysporum Isolates Cultured from the International Space Station. mSystems, 2019, 4(2): e00345-18. DOI:10.1128/mSystems.00345-18 |