4.6

CiteScore

2.2

Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Park Ho-Eun, Do Kyung-Hyo, Lee Wan-Kyu. The immune-modulating effects of viable Weissella cibaria JW15 on RAW 264.7 macrophage cells[J]. The Journal of Biomedical Research, 2020, 34(1): 36-43. DOI: 10.7555/JBR.33.20190095
Citation: Park Ho-Eun, Do Kyung-Hyo, Lee Wan-Kyu. The immune-modulating effects of viable Weissella cibaria JW15 on RAW 264.7 macrophage cells[J]. The Journal of Biomedical Research, 2020, 34(1): 36-43. DOI: 10.7555/JBR.33.20190095

The immune-modulating effects of viable Weissella cibaria JW15 on RAW 264.7 macrophage cells

Funds: This is an open access article under the Creative Commons Attribution (CC BY 4.0) license, which permits others to distribute, remix, adapt and build upon this work, for commercial use, provided the original work is properly cited
More Information
  • Corresponding author:

    Wan-Kyu Lee, Laboratory of Veterinary Bacteriology, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea. Tel/Fax: +82-43-261-2960/+82-43-267-2595, E-mail: wklee@cbu.ac.kr

  • Received Date: June 27, 2019
  • Revised Date: August 13, 2019
  • Accepted Date: September 18, 2019
  • Available Online: November 27, 2019
  • The objective of this study is to investigate the immune-enhancing ability of viable and heat-killed Weissella cibaria JW15 (JW15) isolated from Kimchi in RAW 264.7 macrophages. The immune effects were evaluated by measuring the production of NO, cytokines, inflammatory enzyme, and activation of NF-κB. Viable JW15 executed higher activity on stimulating the release of TNF-α as well as activating NF-κB compared to that of heat-killed JW15. Additionally, viable and heat-killed JW15 significantly increased the production of NO, IL-6 and TNF-α more than that of Lactobacillus rhamnosus GG (LGG). Furthermore, viable JW15 induced higher production of iNOS compared with that of viable LGG. Collectively, our finding indicates that viable JW15 had similar, if not more, immune-enhancing activities as heat-killed JW15. In addition, viable JW15 had higher immune-enhancing activity than commercial strain LGG. Therefore, viable JW15 has the potential to be used as a functional food to improve the host immune response.
  • [1]
    Marin ML, Lee JH, Murtha J, et al. Differential cytokine production in clonal macrophage and T-cell lines cultured with bifidobacteria[J]. J Dairy Sci, 1997, 80(11): 2713–2720. doi: 10.3168/jds.S0022-0302(97)76232-5
    [2]
    Lorsbach RB, Murphy WJ, Lowenstein CJ, et al. Expression of the nitric oxide synthase gene in mouse macrophages activated for tumor cell killing. Molecular basis for the synergy between interferon-gamma and lipopolysaccharide[J]. J Biol Chem, 1993, 268(3): 1908–1913.
    [3]
    Fuller R. Probiotics in man and animals[J]. J Appl Bacteriol, 1989, 66(5): 365–378. doi: 10.1111/j.1365-2672.1989.tb05105.x
    [4]
    Cross ML. Microbes versus microbes: immune signals generated by probiotic lactobacilli and their role in protection against microbial pathogens[J]. FEMS Immunol Med Microbiol, 2002, 34(4): 245–253. doi: 10.1111/j.1574-695X.2002.tb00632.x
    [5]
    Nomoto K. Prevention of infections by probiotics[J]. J Biosci Bioeng, 2005, 100(6): 583–592. doi: 10.1263/jbb.100.583
    [6]
    Isolauri E, Sütas Y, Kankaanpää P, et al. Probiotics: effects on immunity[J]. Am J Clin Nutr, 2001, 73(2): 444S–450S.
    [7]
    Rolfe RD. The role of probiotic cultures in the control of gastrointestinal health[J]. J Nutr, 2000, 130(2): 396S–402S.
    [8]
    Morita H, He F, Fuse T, et al. Cytokine production by the murine macrophage cell line J774.1 after exposure to lactobacilli[J]. Biosci Biotechnol Biochem, 2002, 66(9): 1963–1966. doi: 10.1271/bbb.66.1963
    [9]
    Miettinen M, Vuopio-Varkila J, Varkila K. Production of human tumor necrosis factor alpha, interleukin-6, and interleukin-10 is induced by lactic acid bacteria[J]. Infect Immun, 1996, 64(12): 5403–5405.
    [10]
    De Bruyne K, Camu N, De Vuyst L, et al. Weissella fabaria sp. nov., from a Ghanaian cocoa fermentation[J]. Int J Syst Evol Microbiol, 2010, 60: 1999–2005. doi: 10.1099/ijs.0.019323-0
    [11]
    Padonou SW, Schillinger U, Nielsen DS, et al. Weissella beninensis sp. nov., a motile lactic acid bacterium from submerged cassava fermentations, and emended description of the genus Weissella[J]. Int J Syst Evol Microbiol, 2010, 60: 2193–2198. doi: 10.1099/ijs.0.014332-0
    [12]
    Björkroth KJ, Schillinger U, Geisen R, et al. Taxonomic study of Weissella confusa and description of Weissella cibaria sp. nov., detected in food and clinical samples[J]. Int J Syst Evol Microbiol, 2002, 52: 141–148. doi: 10.1099/00207713-52-1-141
    [13]
    Srionnual S, Yanagida F, Lin LH, et al. Weissellicin 110, a newly discovered bacteriocin from Weissella cibaria 110, isolated from plaa-som, a fermented fish product from Thailand[J]. Appl Environ Microbiol, 2007, 73(7): 2247–2250. doi: 10.1128/AEM.02484-06
    [14]
    Kang MS, Lim HS, Kim SM, et al. Effect of Weissella cibaria on fusobacterium nucleatum-induced interleukin-6 and interleukin-8 production in KB cells[J]. J Bacteriol Virol, 2011, 41(1): 9–18. doi: 10.4167/jbv.2011.41.1.9
    [15]
    Ahn SB, Park HE, Lee SM, et al. Characteristics and immuno-modulatory effects of Weissella cibaria JW15 isolated from Kimchi, Korea traditional fermented food, for probiotic use[J]. J Biomed Res, 2013, 14(4): 206–212. doi: 10.12729/jbr.2013.14.4.206
    [16]
    Park HE, Lee WK. Immunomodulatory effects of mixed Weissella cibaria JW15 with water extract of black soybean and burdock on Listeria monocytogenes infection in mice[J]. J Biomed Transl Res, 2017, 18(1): 1–6.
    [17]
    Park HE, Kang KW, Kim BS, et al. Immunomodulatory potential of Weissella cibaria in aged C57BL/6J mice[J]. J Microbiol Biotechnol, 2017, 27(12): 2094–2103. doi: 10.4014/jmb.1708.08016
    [18]
    Park HE, Lee WK. Immune enhancing effects of Weissella cibaria JW15 on BALB/c mice immunosuppressed by cyclophosphamide[J]. J Funct Foods, 2018, 49: 518–525. doi: 10.1016/j.jff.2018.09.003
    [19]
    Choi HJ, Shin MS, Lee SM, et al. Immunomodulatory properties of Enterococcus faecium JWS 833 isolated from duck intestinal tract and suppression of Listeria monocytogenes infection[J]. Microbiol Immunol, 2012, 56(9): 613–620. doi: 10.1111/j.1348-0421.2012.00486.x
    [20]
    Adams CA. The probiotic paradox: live and dead cells are biological response modifiers[J]. Nutr Res Rev, 2010, 23(1): 37–46. doi: 10.1017/S0954422410000090
    [21]
    Masood MI, Qadir MI, Shirazi JH, et al. Beneficial effects of lactic acid bacteria on human beings[J]. Crit Rev Microbiol, 2011, 37(1): 91–98. doi: 10.3109/1040841X.2010.536522
    [22]
    Marletta MA. Nitric oxide synthase structure and mechanism[J]. J Biol Chem, 1993, 268(17): 12231–12234.
    [23]
    Cato ACB, Wade E. Molecular mechanisms of anti-inflammatory action of glucocorticoids[J]. BioEssays, 1996, 18(5): 371–378. doi: 10.1002/bies.950180507
    [24]
    Jung JY, Shin JS, Lee SG, et al. Lactobacillus sakei K040706 evokes immunostimulatory effects on macrophages through TLR 2-mediated activation[J]. Int Immunopharmacol, 2015, 28(1): 88–96. doi: 10.1016/j.intimp.2015.05.037
    [25]
    Lin WH, Yu B, Lin CK, et al. Immune effect of heat-killed multistrain of Lactobacillus acidophilus against Salmonella typhimurium invasion to mice[J]. J Appl Microbiol, 2007, 102(1): 22–31. doi: 10.1111/j.1365-2672.2006.03073.x
    [26]
    Kopp EB, Ghosh S. NF-κB and rel proteins in innate immunity[J]. Adv Immunol, 1995, 58: 1–27. doi: 10.1016/S0065-2776(08)60618-5
    [27]
    Arai KI, Lee F, Miyajima A, et al. Cytokines: coordinators of immune and inflammatory responses[J]. Annu Rev Biochem, 1990, 59: 783–836. doi: 10.1146/annurev.bi.59.070190.004031
    [28]
    Chon H, Choi B, Lee E, et al. Immunomodulatory effects of specific bacterial components of Lactobacillus plantarum KFCC11389P on the murine macrophage cell line RAW 264•7[J]. J Appl Microbiol, 2009, 107(5): 1588–1597. doi: 10.1111/j.1365-2672.2009.04343.x
    [29]
    Mantovani A, Dinarello CA, Molgora M, et al. Interleukin-1 and related cytokines in the regulation of inflammation and immunity[J]. Immunity, 2019, 50(4): 778–795. doi: 10.1016/j.immuni.2019.03.012
    [30]
    Matsuguchi T, Takagi A, Matsuzaki T, et al. Lipoteichoic acids from Lactobacillus strains elicit strong tumor necrosis factor alpha-inducing activities in macrophages through Toll-like receptor 2[J]. Clin Diagn Lab Immunol, 2003, 10(2): 259–266.
    [31]
    Hong YF, Lee YD, Park JY, et al. Lipoteichoic acid isolated from Weissella cibaria increases cytokine production in human monocyte-like THP-1 cells and mouse splenocytes[J]. J Microbiol Biotechnol, 2016, 26(7): 1198–1205. doi: 10.4014/jmb.1601.01047
    [32]
    Vinderola G, Matar C, Perdigon G. Role of intestinal epithelial cells in immune effects mediated by gram-positive probiotic bacteria: involvement of toll-like receptors[J]. Clin Diagn Lab Immunol, 2005, 12(9): 1075–1084.
    [33]
    Fujie H, Villena J, Tohno M, et al. Toll-like receptor-2-activating bifidobacteria strains differentially regulate inflammatory cytokines in the porcine intestinal epithelial cell culture system: finding new anti-inflammatory immunobiotics[J]. FEMS Immunol Med Microbiol, 2011, 63(1): 129–139. doi: 10.1111/j.1574-695X.2011.00837.x
    [34]
    Khani S, Motamedifar M, Golmoghaddam H, et al. In vitro study of the effect of a probiotic bacterium Lactobacillus rhamnosus against herpes simplex virus type 1[J]. Braz J Infect Dis, 2012, 16(2): 129–135.
    [35]
    Chang CK, Wang SC, Chiu CK, et al. Effect of lactic acid bacteria isolated from fermented mustard on immunopotentiating activity[J]. Asian Pac J Trop Biomed, 2015, 5(4): 281–286. doi: 10.1016/S2221-1691(15)30346-4
  • Related Articles

    [1]Liping Cheng, He Jin, Tianheng Xiao, Xiaoyu Yang, Tingting Zhao, Eugene Yujun Xu. Human circBOULE RNAs as potential biomarkers for sperm quality and male infertility[J]. The Journal of Biomedical Research, 2024, 38(5): 473-484. DOI: 10.7555/JBR.37.20230296
    [2]Zhang Weifeng, Chen Han, Zhang Guoxin, Jin Guangfu. A nomogram for predicting lymph node metastasis in superficial esophageal squamous cell carcinoma[J]. The Journal of Biomedical Research, 2021, 35(5): 361-370. DOI: 10.7555/JBR.35.20210034
    [3]He Xi, Xie Wenxiu, Li Huiling, Cui Yiqiang, Wang Ya, Guo Xuejiang, Sha Jiahao. The testis-specifically expressed gene Trim69 is not essential for fertility in mice[J]. The Journal of Biomedical Research, 2021, 35(1): 47-60. DOI: 10.7555/JBR.34.20200069
    [4]Huang Lei, Lu Qun, Du Jiangbo, Lv Hong, Tao Shiyao, Chen Shiyao, Li Xiuzhu, Han Xiumei, Zhou Kun, Xu Bo, Liu Xiaoyu, Ma Hongxia, Xia Yankai, Jin Guangfu, Shen Hongbing, Ling Xiufeng, Hu Zhibin, Tan Jichun, Diao Feiyang. Cumulative live birth rates of in vitro fertilization/intracytoplasmic sperm injection after multiple complete cycles in China[J]. The Journal of Biomedical Research, 2020, 34(5): 361-368. DOI: 10.7555/JBR.34.20200035
    [5]Slimen Itaf Ben, Boubchir Larbi, Seddik Hassene. Epileptic seizure prediction based on EEG spikes detection of ictal-preictal states[J]. The Journal of Biomedical Research, 2020, 34(3): 162-169. DOI: 10.7555/JBR.34.20190097
    [6]Wang Le Yi, McKelvey George M., Wang Hong. Multi-outcome predictive modelling of anesthesia patients[J]. The Journal of Biomedical Research, 2019, 33(6): 430-434. DOI: 10.7555/JBR.33.20180088
    [7]Young-Joo Yi, S. Kamala-Kannan, Jeong-Muk Lim, Byung-Taek Oh, Sang-Myeong Lee. Effects of difructose dianhydride (DFA)-IV on in vitro fertilization in pigs[J]. The Journal of Biomedical Research, 2017, 31(5): 453-461. DOI: 10.7555/JBR.31.20160115
    [8]Anna Karolina Zuk, Xuesong Wen, Stephen Dilworth, Dong Li, Lucy Ghali. Modeling and validating three dimensional human normal cervix and cervical cancer tissues in vitro[J]. The Journal of Biomedical Research, 2017, 31(3): 240-247. DOI: 10.7555/JBR.31.20160150
    [9]Seo-jin Park, Kyoung-Ha So, Sang-Hwan Hyun. Effect of zeaxanthin on porcine embryonic development during in vitro maturation[J]. The Journal of Biomedical Research, 2017, 31(2): 154-161. DOI: 10.7555/JBR.31.20160079
    [10]Eliza Shrestha, Yuebo Yang, Xiaomao Li, Yu Zhang. Successful conservative management with methotrexate and mifepristone of cervical pregnancy[J]. The Journal of Biomedical Research, 2011, 25(1): 71-73. DOI: 10.1016/S1674-8301(11)60009-2

Catalog

    Article Metrics

    Article views (3714) PDF downloads (115) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return