4.6

CiteScore

2.2

Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Huang Jiancheng, Chen Meng, Xu Kai, Zhou Rongmei, Zhang Shujie, Zhao Chen. Microarray expression profile and functional analysis of circular RNAs in choroidal neovascularization[J]. The Journal of Biomedical Research, 2020, 34(1): 67-74. DOI: 10.7555/JBR.33.20190063
Citation: Huang Jiancheng, Chen Meng, Xu Kai, Zhou Rongmei, Zhang Shujie, Zhao Chen. Microarray expression profile and functional analysis of circular RNAs in choroidal neovascularization[J]. The Journal of Biomedical Research, 2020, 34(1): 67-74. DOI: 10.7555/JBR.33.20190063

Microarray expression profile and functional analysis of circular RNAs in choroidal neovascularization

More Information
  • Corresponding author:

    Shujie Zhang, Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, 83 Fenyang Road, Shanghai 200031, China. Tel/Fax: +86-21-64377134/+86-21-64377151, E-mail: shujiezha@163.com

    Chen Zhao, the First Affiliated Hospital of Nanjing Medical University and State Key Laboratory of Reproductive Medicine, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China. Tel/Fax: +86-25-68135356/+86-25-68135356, E-mail: dr_zhaochen@163.com

  • Received Date: April 24, 2019
  • Revised Date: September 25, 2019
  • Accepted Date: October 15, 2019
  • Available Online: November 28, 2019
  • Choroidal neovascularization (CNV) is a leading cause of visual loss in age-related macular degeneration (AMD). However, the molecular mechanism for CNV progression is still unclear. This study aimed to identify CNV-related circular RNAs (circRNAs), a novel class of non-coding RNAs with diverse functions. A total of 117 circRNAs were differentially expressed in the murine CNV model by microarrays. Gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed to identify the functions of selected circRNAs. The host genes of these circRNAs were predicted to be targeted to neurogenesis (ontology: biological process), proteinaceous extracellular matrix (ECM) (ontology: cellular component), and binding (ontology: molecular function). Differentially expressed circRNAs-mediated regulatory networks were enriched in ECM receptor interaction. Most of the dysregulated circRNAs could potentially bind to five different miRNAs by TargetScan and miRanda. Specifically, circ_15752 was identified in this circRNAs pool which may facilitate vascular endothelial cell proliferation, migration, and tube formation, suggesting a critical role in endothelial angiogenesis. Our work suggests that dysregulated circRNAs may be involved in CNV pathogenesis and serve as potential biomarkers for CNV.
  • [1]
    Lim LS, Mitchell P, Seddon JM, et al. Age-related macular degeneration[J]. Lancet, 2012, 379(9827): 1728–1738. doi: 10.1016/S0140-6736(12)60282-7
    [2]
    Sobrin L, Seddon JM. Nature and nurture-genes and environment-predict onset and progression of macular degeneration[J]. Prog Retin Eye Res, 2014, 40: 1–15. doi: 10.1016/j.preteyeres.2013.12.004
    [3]
    Rakoczy EP, Lai CM, Magno AL, et al. Gene therapy with recombinant adeno-associated vectors for neovascular age-related macular degeneration: 1 year follow-up of a phase 1 randomised clinical trial[J]. Lancet, 2015, 386(10011): 2395–2403. doi: 10.1016/S0140-6736(15)00345-1
    [4]
    Ding XY, Patel M, Chan CC. Molecular pathology of age-related macular degeneration[J]. Prog Retin Eye Res, 2009, 28(1): 1–18. doi: 10.1016/j.preteyeres.2008.10.001
    [5]
    Velez-Montoya R, Oliver SC, Olson JL, et al. Current knowledge and trends in age-related macular degeneration: genetics, epidemiology, and prevention[J]. Retina, 2014, 34(3): 423–441. doi: 10.1097/IAE.0000000000000036
    [6]
    Schmidt-Erfurth U, Kaiser PK, Korobelnik JF, et al. Intravitreal aflibercept injection for neovascular age-related macular degeneration: ninety-six-week results of the VIEW studies[J]. Ophthalmology, 2014, 121(1): 193–201. doi: 10.1016/j.ophtha.2013.08.011
    [7]
    The CATT Research Group. Ranibizumab and bevacizumab for neovascular age-related macular degeneration[J]. N Engl J Med, 2011, 364(20): 1897–1908. doi: 10.1056/NEJMoa1102673
    [8]
    Salzman J, Chen RE, Olsen MN, et al. Cell-type specific features of circular RNA expression[J]. PLoS Genet, 2013, 9(9): e1003777. doi: 10.1371/journal.pgen.1003777
    [9]
    Zlotorynski E. Non-coding RNA: circular RNAs promote transcription[J]. Nat Rev Mol Cell Biol, 2015, 16(4): 206.
    [10]
    Lyu D, Huang SL. The emerging role and clinical implication of human exonic circular RNA[J]. RNA Biol, 2017, 14(8): 1000–1006. doi: 10.1080/15476286.2016.1227904
    [11]
    Salzman J. Circular RNA expression: its potential regulation and function[J]. Trends Genet, 2016, 32(5): 309–316. doi: 10.1016/j.tig.2016.03.002
    [12]
    Holdt LM, Stahringer A, Sass K, et al. Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans[J]. Nat Commun, 2016, 7: 12429. doi: 10.1038/ncomms12429
    [13]
    Zhong ZY, Huang MG, Lv MX, et al. Circular RNA MYLK as a competing endogenous RNA promotes bladder cancer progression through modulating VEGFA/VEGFR2 signaling pathway[J]. Cancer Lett, 2017, 403: 305–317. doi: 10.1016/j.canlet.2017.06.027
    [14]
    Shan K, Liu C, Liu BH, et al. Circular noncoding RNA HIPK3 mediates retinal vascular dysfunction in diabetes mellitus[J]. Circulation, 2017, 136(17): 1629–1642. doi: 10.1161/CIRCULATIONAHA.117.029004
    [15]
    Lambert V, Lecomte J, Hansen S, et al. Laser-induced choroidal neovascularization model to study age-related macular degeneration in mice[J]. Nat Protoc, 2013, 8(11): 2197–2211. doi: 10.1038/nprot.2013.135
    [16]
    Zhao C, Yasumura D, Li XY, et al. mTOR-mediated dedifferentiation of the retinal pigment epithelium initiates photoreceptor degeneration in mice[J]. J Clin Invest, 2011, 121(1): 369–383. doi: 10.1172/JCI44303
    [17]
    Pasquinelli AE. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship[J]. Nat Rev Genet, 2012, 13(4): 271–282. doi: 10.1038/nrg3162
    [18]
    Bishop PN. The role of extracellular matrix in retinal vascular development and preretinal neovascularization[J]. Exp Eye Res, 2015, 133: 30–36. doi: 10.1016/j.exer.2014.10.021
    [19]
    Zhang LW, Liu SH, Wang JH, et al. Differential expressions of micrornas and transfer RNA-derived small RNAs: potential targets of choroidal neovascularization[J]. Curr Eye Res, 2019, 44(11): 1226–1235. doi: 10.1080/02713683.2019.1625407
    [20]
    Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges[J]. Nature, 2013, 495(7441): 384–388. doi: 10.1038/nature11993
    [21]
    Yu DY, Yu PK, Cringle SJ, et al. Functional and morphological characteristics of the retinal and choroidal vasculature[J]. Prog Retin Eye Res, 2014, 40: 53–93. doi: 10.1016/j.preteyeres.2014.02.001
    [22]
    Campochiaro PA. Ocular neovascularization[J]. J Mol Med (Berl), 2013, 91(3): 311–321. doi: 10.1007/s00109-013-0993-5
    [23]
    Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency[J]. Nature, 2013, 495(7441): 333–338. doi: 10.1038/nature11928
    [24]
    Du WW, Yang WN, Chen Y, et al. Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses[J]. Eur Heart J, 2017, 38(18): 1402–1412.
    [25]
    Hansen TB, Kjems J, Damgaard CK. Circular RNA and miR-7 in cancer[J]. Cancer Res, 2013, 73(18): 5609–5612. doi: 10.1158/0008-5472.CAN-13-1568
    [26]
    Boeckel JN, Jaé N, Heumuller AW, et al. Identification and characterization of hypoxia-regulated endothelial circular RNA[J]. Circ Res, 2015, 117(10): 884–890. doi: 10.1161/CIRCRESAHA.115.306319
    [27]
    Liu C, Yao MD, Li CP, et al. Silencing of circular RNA-ZNF609 ameliorates vascular endothelial dysfunction[J]. Theranostics, 2017, 7(11): 2863–2877. doi: 10.7150/thno.19353
    [28]
    Wu Y, Zhang Y, Zhang Y, et al. CircRNA hsa_circ_0005105 upregulates NAMPT expression and promotes chondrocyte extracellular matrix degradation by sponging miR-26a[J]. Cell Biol Int, 2017, 41(12): 1283–1289. doi: 10.1002/cbin.10761
    [29]
    Zou MS, Huang CX, Li XZ, et al. Circular RNA expression profile and potential function of hsa_circRNA_101238 in human thoracic aortic dissection[J]. Oncotarget, 2017, 8(47): 81825–81837.
    [30]
    Eble JA, Niland S. The extracellular matrix of blood vessels[J]. Curr Pharm Des, 2009, 15(12): 1385–1400. doi: 10.2174/138161209787846757
    [31]
    Wagenseil JE, Mecham RP. Vascular extracellular matrix and arterial mechanics[J]. Physiol Rev, 2009, 89(3): 957–989. doi: 10.1152/physrev.00041.2008
    [32]
    Zhang Y, Cai SW, Jia YR, et al. Decoding noncoding RNAs: role of microRNAs and long noncoding RNAs in ocular neovascularization[J]. Theranostics, 2017, 7(12): 3155–3167. doi: 10.7150/thno.19646
    [33]
    Mohr AM, Mott JL. Overview of microRNA biology[J]. Semin Liver Dis, 2015, 35(1): 3–11. doi: 10.1055/s-0034-1397344
    [34]
    van Lookeren Campagne M, LeCouter J, Yaspan BL, et al. Mechanisms of age-related macular degeneration and therapeutic opportunities[J]. J Pathol, 2014, 232(2): 151–164. doi: 10.1002/path.4266
    [35]
    Crawford TN, Alfaro III DV, Kerrison JB, et al. Diabetic retinopathy and angiogenesis[J]. Curr Diabetes Rev, 2009, 5(1): 8–13. doi: 10.2174/157339909787314149
  • Related Articles

    [1]Lianjun Shi, Huimin Ge, Fan Ye, Xiumiao Li, Qin Jiang. The role of pericyte in ocular vascular diseases[J]. The Journal of Biomedical Research, 2024, 38(6): 521-530. DOI: 10.7555/JBR.37.20230314
    [2]Weixi Feng, Yanli Zhang, Peng Sun, Ming Xiao. Acquired immunity and Alzheimer's disease[J]. The Journal of Biomedical Research, 2023, 37(1): 15-29. DOI: 10.7555/JBR.36.20220083
    [3]Tiwari-Heckler Shilpa, Jiang Z. Gordon, Popov Yury, J. Mukamal Kenneth. Daily high-dose aspirin does not lower APRI in the Aspirin-Myocardial Infarction Study[J]. The Journal of Biomedical Research, 2020, 34(2): 139-142. DOI: 10.7555/JBR.33.20190041
    [4]Huan Liu, Shijiang Zhang, Yongfeng Shao, Xiaohu Lu, Weidong Gu, Buqing Ni, Qun Gu, Junjie Du. Biomechanical characterization of a novel ring connector for sutureless aortic anastomosis[J]. The Journal of Biomedical Research, 2018, 32(6): 454-460. DOI: 10.7555/JBR.31.20170011
    [5]Minbo Zang, Qiao Zhou, Yunfei Zhu, Mingxi Liu, Zuomin Zhou. Effects of chemotherapeutic agent bendamustine for nonhodgkin lymphoma on spermatogenesis in mice[J]. The Journal of Biomedical Research, 2018, 32(6): 442-453. DOI: 10.7555/JBR.31.20170023
    [6]Kaibo Lin, Shikun Zhang, Jieli Chen, Ding Yang, Mengyi Zhu, Eugene Yujun Xu. Generation and functional characterization of a conditional Pumilio2 null allele[J]. The Journal of Biomedical Research, 2018, 32(6): 434-441. DOI: 10.7555/JBR.32.20170117
    [7]Fengzhen Wang, Mingwan Zhang, Dongsheng Zhang, Yuan Huang, Li Chen, Sunmin Jiang, Kun Shi, Rui Li. Preparation, optimization, and characterization of chitosancoated solid lipid nanoparticles for ocular drug delivery[J]. The Journal of Biomedical Research, 2018, 32(6): 411-423. DOI: 10.7555/JBR.32.20160170
    [8]Christopher J. Danford, Zemin Yao, Z. Gordon Jiang. Non-alcoholic fatty liver disease: a narrative review of genetics[J]. The Journal of Biomedical Research, 2018, 32(6): 389-400. DOI: 10.7555/JBR.32.20180045
    [9]Markella Ponticos, Barbara D. Smith. Extracellular matrix synthesis in vascular disease: hypertension, and atherosclerosis[J]. The Journal of Biomedical Research, 2014, 28(1): 25-39. DOI: 10.7555/JBR.27.20130064
    [10]Sundeep?S.?Tumber, Hong?Liu. Epidural abscess after multiple lumbar punctures for labour epidural catheter placement[J]. The Journal of Biomedical Research, 2010, 24(4): 332-335. DOI: 10.1016/S1674-8301(10)60046-2
  • Other Related Supplements

Catalog

    Article Metrics

    Article views (4129) PDF downloads (93) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return