Citation: | Huang Jiancheng, Chen Meng, Xu Kai, Zhou Rongmei, Zhang Shujie, Zhao Chen. Microarray expression profile and functional analysis of circular RNAs in choroidal neovascularization[J]. The Journal of Biomedical Research, 2020, 34(1): 67-74. DOI: 10.7555/JBR.33.20190063 |
[1] |
Lim LS, Mitchell P, Seddon JM, et al. Age-related macular degeneration[J]. Lancet, 2012, 379(9827): 1728–1738. doi: 10.1016/S0140-6736(12)60282-7
|
[2] |
Sobrin L, Seddon JM. Nature and nurture-genes and environment-predict onset and progression of macular degeneration[J]. Prog Retin Eye Res, 2014, 40: 1–15. doi: 10.1016/j.preteyeres.2013.12.004
|
[3] |
Rakoczy EP, Lai CM, Magno AL, et al. Gene therapy with recombinant adeno-associated vectors for neovascular age-related macular degeneration: 1 year follow-up of a phase 1 randomised clinical trial[J]. Lancet, 2015, 386(10011): 2395–2403. doi: 10.1016/S0140-6736(15)00345-1
|
[4] |
Ding XY, Patel M, Chan CC. Molecular pathology of age-related macular degeneration[J]. Prog Retin Eye Res, 2009, 28(1): 1–18. doi: 10.1016/j.preteyeres.2008.10.001
|
[5] |
Velez-Montoya R, Oliver SC, Olson JL, et al. Current knowledge and trends in age-related macular degeneration: genetics, epidemiology, and prevention[J]. Retina, 2014, 34(3): 423–441. doi: 10.1097/IAE.0000000000000036
|
[6] |
Schmidt-Erfurth U, Kaiser PK, Korobelnik JF, et al. Intravitreal aflibercept injection for neovascular age-related macular degeneration: ninety-six-week results of the VIEW studies[J]. Ophthalmology, 2014, 121(1): 193–201. doi: 10.1016/j.ophtha.2013.08.011
|
[7] |
The CATT Research Group. Ranibizumab and bevacizumab for neovascular age-related macular degeneration[J]. N Engl J Med, 2011, 364(20): 1897–1908. doi: 10.1056/NEJMoa1102673
|
[8] |
Salzman J, Chen RE, Olsen MN, et al. Cell-type specific features of circular RNA expression[J]. PLoS Genet, 2013, 9(9): e1003777. doi: 10.1371/journal.pgen.1003777
|
[9] |
Zlotorynski E. Non-coding RNA: circular RNAs promote transcription[J]. Nat Rev Mol Cell Biol, 2015, 16(4): 206.
|
[10] |
Lyu D, Huang SL. The emerging role and clinical implication of human exonic circular RNA[J]. RNA Biol, 2017, 14(8): 1000–1006. doi: 10.1080/15476286.2016.1227904
|
[11] |
Salzman J. Circular RNA expression: its potential regulation and function[J]. Trends Genet, 2016, 32(5): 309–316. doi: 10.1016/j.tig.2016.03.002
|
[12] |
Holdt LM, Stahringer A, Sass K, et al. Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans[J]. Nat Commun, 2016, 7: 12429. doi: 10.1038/ncomms12429
|
[13] |
Zhong ZY, Huang MG, Lv MX, et al. Circular RNA MYLK as a competing endogenous RNA promotes bladder cancer progression through modulating VEGFA/VEGFR2 signaling pathway[J]. Cancer Lett, 2017, 403: 305–317. doi: 10.1016/j.canlet.2017.06.027
|
[14] |
Shan K, Liu C, Liu BH, et al. Circular noncoding RNA HIPK3 mediates retinal vascular dysfunction in diabetes mellitus[J]. Circulation, 2017, 136(17): 1629–1642. doi: 10.1161/CIRCULATIONAHA.117.029004
|
[15] |
Lambert V, Lecomte J, Hansen S, et al. Laser-induced choroidal neovascularization model to study age-related macular degeneration in mice[J]. Nat Protoc, 2013, 8(11): 2197–2211. doi: 10.1038/nprot.2013.135
|
[16] |
Zhao C, Yasumura D, Li XY, et al. mTOR-mediated dedifferentiation of the retinal pigment epithelium initiates photoreceptor degeneration in mice[J]. J Clin Invest, 2011, 121(1): 369–383. doi: 10.1172/JCI44303
|
[17] |
Pasquinelli AE. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship[J]. Nat Rev Genet, 2012, 13(4): 271–282. doi: 10.1038/nrg3162
|
[18] |
Bishop PN. The role of extracellular matrix in retinal vascular development and preretinal neovascularization[J]. Exp Eye Res, 2015, 133: 30–36. doi: 10.1016/j.exer.2014.10.021
|
[19] |
Zhang LW, Liu SH, Wang JH, et al. Differential expressions of micrornas and transfer RNA-derived small RNAs: potential targets of choroidal neovascularization[J]. Curr Eye Res, 2019, 44(11): 1226–1235. doi: 10.1080/02713683.2019.1625407
|
[20] |
Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges[J]. Nature, 2013, 495(7441): 384–388. doi: 10.1038/nature11993
|
[21] |
Yu DY, Yu PK, Cringle SJ, et al. Functional and morphological characteristics of the retinal and choroidal vasculature[J]. Prog Retin Eye Res, 2014, 40: 53–93. doi: 10.1016/j.preteyeres.2014.02.001
|
[22] |
Campochiaro PA. Ocular neovascularization[J]. J Mol Med (Berl), 2013, 91(3): 311–321. doi: 10.1007/s00109-013-0993-5
|
[23] |
Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency[J]. Nature, 2013, 495(7441): 333–338. doi: 10.1038/nature11928
|
[24] |
Du WW, Yang WN, Chen Y, et al. Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses[J]. Eur Heart J, 2017, 38(18): 1402–1412.
|
[25] |
Hansen TB, Kjems J, Damgaard CK. Circular RNA and miR-7 in cancer[J]. Cancer Res, 2013, 73(18): 5609–5612. doi: 10.1158/0008-5472.CAN-13-1568
|
[26] |
Boeckel JN, Jaé N, Heumuller AW, et al. Identification and characterization of hypoxia-regulated endothelial circular RNA[J]. Circ Res, 2015, 117(10): 884–890. doi: 10.1161/CIRCRESAHA.115.306319
|
[27] |
Liu C, Yao MD, Li CP, et al. Silencing of circular RNA-ZNF609 ameliorates vascular endothelial dysfunction[J]. Theranostics, 2017, 7(11): 2863–2877. doi: 10.7150/thno.19353
|
[28] |
Wu Y, Zhang Y, Zhang Y, et al. CircRNA hsa_circ_0005105 upregulates NAMPT expression and promotes chondrocyte extracellular matrix degradation by sponging miR-26a[J]. Cell Biol Int, 2017, 41(12): 1283–1289. doi: 10.1002/cbin.10761
|
[29] |
Zou MS, Huang CX, Li XZ, et al. Circular RNA expression profile and potential function of hsa_circRNA_101238 in human thoracic aortic dissection[J]. Oncotarget, 2017, 8(47): 81825–81837.
|
[30] |
Eble JA, Niland S. The extracellular matrix of blood vessels[J]. Curr Pharm Des, 2009, 15(12): 1385–1400. doi: 10.2174/138161209787846757
|
[31] |
Wagenseil JE, Mecham RP. Vascular extracellular matrix and arterial mechanics[J]. Physiol Rev, 2009, 89(3): 957–989. doi: 10.1152/physrev.00041.2008
|
[32] |
Zhang Y, Cai SW, Jia YR, et al. Decoding noncoding RNAs: role of microRNAs and long noncoding RNAs in ocular neovascularization[J]. Theranostics, 2017, 7(12): 3155–3167. doi: 10.7150/thno.19646
|
[33] |
Mohr AM, Mott JL. Overview of microRNA biology[J]. Semin Liver Dis, 2015, 35(1): 3–11. doi: 10.1055/s-0034-1397344
|
[34] |
van Lookeren Campagne M, LeCouter J, Yaspan BL, et al. Mechanisms of age-related macular degeneration and therapeutic opportunities[J]. J Pathol, 2014, 232(2): 151–164. doi: 10.1002/path.4266
|
[35] |
Crawford TN, Alfaro III DV, Kerrison JB, et al. Diabetic retinopathy and angiogenesis[J]. Curr Diabetes Rev, 2009, 5(1): 8–13. doi: 10.2174/157339909787314149
|
[1] | Lianjun Shi, Huimin Ge, Fan Ye, Xiumiao Li, Qin Jiang. The role of pericyte in ocular vascular diseases[J]. The Journal of Biomedical Research, 2024, 38(6): 521-530. DOI: 10.7555/JBR.37.20230314 |
[2] | Weixi Feng, Yanli Zhang, Peng Sun, Ming Xiao. Acquired immunity and Alzheimer's disease[J]. The Journal of Biomedical Research, 2023, 37(1): 15-29. DOI: 10.7555/JBR.36.20220083 |
[3] | Tiwari-Heckler Shilpa, Jiang Z. Gordon, Popov Yury, J. Mukamal Kenneth. Daily high-dose aspirin does not lower APRI in the Aspirin-Myocardial Infarction Study[J]. The Journal of Biomedical Research, 2020, 34(2): 139-142. DOI: 10.7555/JBR.33.20190041 |
[4] | Huan Liu, Shijiang Zhang, Yongfeng Shao, Xiaohu Lu, Weidong Gu, Buqing Ni, Qun Gu, Junjie Du. Biomechanical characterization of a novel ring connector for sutureless aortic anastomosis[J]. The Journal of Biomedical Research, 2018, 32(6): 454-460. DOI: 10.7555/JBR.31.20170011 |
[5] | Minbo Zang, Qiao Zhou, Yunfei Zhu, Mingxi Liu, Zuomin Zhou. Effects of chemotherapeutic agent bendamustine for nonhodgkin lymphoma on spermatogenesis in mice[J]. The Journal of Biomedical Research, 2018, 32(6): 442-453. DOI: 10.7555/JBR.31.20170023 |
[6] | Kaibo Lin, Shikun Zhang, Jieli Chen, Ding Yang, Mengyi Zhu, Eugene Yujun Xu. Generation and functional characterization of a conditional Pumilio2 null allele[J]. The Journal of Biomedical Research, 2018, 32(6): 434-441. DOI: 10.7555/JBR.32.20170117 |
[7] | Fengzhen Wang, Mingwan Zhang, Dongsheng Zhang, Yuan Huang, Li Chen, Sunmin Jiang, Kun Shi, Rui Li. Preparation, optimization, and characterization of chitosancoated solid lipid nanoparticles for ocular drug delivery[J]. The Journal of Biomedical Research, 2018, 32(6): 411-423. DOI: 10.7555/JBR.32.20160170 |
[8] | Christopher J. Danford, Zemin Yao, Z. Gordon Jiang. Non-alcoholic fatty liver disease: a narrative review of genetics[J]. The Journal of Biomedical Research, 2018, 32(6): 389-400. DOI: 10.7555/JBR.32.20180045 |
[9] | Markella Ponticos, Barbara D. Smith. Extracellular matrix synthesis in vascular disease: hypertension, and atherosclerosis[J]. The Journal of Biomedical Research, 2014, 28(1): 25-39. DOI: 10.7555/JBR.27.20130064 |
[10] | Sundeep?S.?Tumber, Hong?Liu. Epidural abscess after multiple lumbar punctures for labour epidural catheter placement[J]. The Journal of Biomedical Research, 2010, 24(4): 332-335. DOI: 10.1016/S1674-8301(10)60046-2 |