Citation: | Zheng Yuming, Jin Chaoling, Cui Huijuan, Dai Haojie, Yan Jue, Han Pingping, Hsu Bailing. Improved image resolution on thoracic carcinomas by quantitative 18F-FDG coincidence SPECT/CT in comparison to 18F-FDG PET/CT[J]. The Journal of Biomedical Research, 2020, 34(4): 309-317. DOI: 10.7555/JBR.33.20190004 |
[1] |
Facey K, Bradbury I, Laking G, et al. Overview of the clinical effectiveness of positron emission tomography imaging in selected cancers[J]. Health Technol Assess, 2007, 44(11): iii-iv, xi–267.
|
[2] |
Gallamini A, Zwarthoed C, Borra A. Positron emission tomography (PET) in oncology[J]. Cancers, 2014, 6(4): 1821–1889. doi: 10.3390/cancers6041821
|
[3] |
Ben-Haim S, Ell P. 18F-FDG PET and PET/CT in the evaluation of cancer treatment response[J]. J Nucl Med, 2009, 50(1): 88–99.
|
[4] |
Martin WH, Delbeke D, Patton JA, et al. FDG-SPECT: correlation with FDG-PET[J]. J Nucl Med, 1995, 36(6): 988–995.
|
[5] |
Martin WH, Delbeke D, Patton JA, et al. Detection of malignancies with SPECT versus PET, with 2-[fluorine-18] fluoro-2-deoxy-D-glucose[J]. Radiology, 1996, 198(1): 225–231. doi: 10.1148/radiology.198.1.8539384
|
[6] |
Delbeke D, Patton JA, Martin WH, et al. FDG PET and dual-head gamma camera positron coincidence detection imaging of suspected malignancies and brain disorders[J]. J Nucl Med, 1999, 40(1): 110–117.
|
[7] |
Qiao WL, Zhao JH, Wang C, et al. Comparison of 18F-FDG coincidence SPECT imaging and computed tomography in the initial staging and therapeutic evaluation of lymphomas[J]. Chin J Oncol (in Chinese), 2007, 29(7): 536–539.
|
[8] |
Mao YS, He J, Zheng R, et al. The role of 18F-FDG DHC SPECT-CT in the diagnosis and staging for lung cancer[J]. Chin J Oncol (in Chinese), 2008, 30(12): 933–936.
|
[9] |
Seo Y, Mari C, Hasegawa BH. Technological development and advances in single-photon emission computed tomography/computed tomography[J]. Semin Nucl Med, 2008, 38(3): 177–198. doi: 10.1053/j.semnuclmed.2008.01.001
|
[10] |
Barret O, Carpenter TA, Clark JC, et al. Monte Carlo simulation and scatter correction of the GE Advance PET scanner with SimSET and Geant4[J]. Phys Med Biol, 2005, 50(20): 4823–4840. doi: 10.1088/0031-9155/50/20/006
|
[11] |
Watson PG, Mainegra-Hing E, Tomic N, et al. Implementation of an efficient Monte Carlo calculation for CBCT scatter correction: phantom study[J]. J Appl Clin Med Phys, 2015, 16(4): 216–227. doi: 10.1120/jacmp.v16i4.5393
|
[12] |
Sureau FC, Reader AJ, Comtat C, et al. Impact of image-space resolution modeling for studies with the high-resolution research tomograph[J]. J Nucl Med, 2008, 49(6): 1000–1008. doi: 10.2967/jnumed.107.045351
|
[13] |
Rahmim A, Qi JY, Sossi V. Resolution modeling in PET imaging: theory, practice, benefits, and pitfalls[J]. Med Phys, 2013, 40(6): 064301.
|
[14] |
Hsu B, Hu LH, Yang BH, et al. SPECT myocardial blood flow quantitation toward clinical use: a comparative study with 13N-Ammonia PET myocardial blood flow quantitation[J]. Eur J Nucl Med Mol Imaging, 2017, 44(1): 117–128. doi: 10.1007/s00259-016-3491-5
|
[15] |
Gong K, Cherry SR, Qi JY. On the assessment of spatial resolution of PET systems with iterative image reconstruction[J]. Phys Med Biol, 2016, 61(5): N193–N202. doi: 10.1088/0031-9155/61/5/N193
|
[16] |
Melcher CL. Scintillation crystals for PET[J]. J Nucl Med, 2000, 41(6): 1051–1055.
|
[17] |
Bettinardi V, Mancosu P, Danna M, et al. Two-dimensional vs three-dimensional imaging in whole body oncologic PET/CT: a Discovery-STE phantom and patient study[J]. Q J Nucl Med Mol Imaging, 2007, 51(3): 214–223.
|
[18] |
Tanaka E, Hasegawa T, Yamashita T, et al. A 2D/3D hybrid PET scanner with rotating partial slice-septa and its quantitative procedures[J]. Phys Med Biol, 2000, 45(10): 2821–2841. doi: 10.1088/0031-9155/45/10/307
|
[19] |
Surti S. Update on time-of-flight PET imaging[J]. J Nucl Med, 2015, 56(1): 98–105. doi: 10.2967/jnumed.114.145029
|
[20] |
El Fakhri G, Surti S, Trott CM, et al. Improvement in lesion detection with whole-body oncologic time-of-flight PET[J]. J Nucl Med, 2011, 52(3): 347–353. doi: 10.2967/jnumed.110.080382
|
[1] | Hamed Amini Amirkolaee, Hamid Amini Amirkolaee. Medical image translation using an edge-guided generative adversarial network with global-to-local feature fusion[J]. The Journal of Biomedical Research, 2022, 36(6): 409-422. DOI: 10.7555/JBR.36.20220037 |
[2] | Qian Sun, Yusi Hu, Saiyue Deng, Yanyu Xiong, Zhili Huang. A visualization pipeline for in vivo two-photon volumetric astrocytic calcium imaging[J]. The Journal of Biomedical Research, 2022, 36(5): 358-367. DOI: 10.7555/JBR.36.20220099 |
[3] | Ilakiyaselvan N., Nayeemulla Khan A., Shahina A.. Deep learning approach to detect seizure using reconstructed phase space images[J]. The Journal of Biomedical Research, 2020, 34(3): 240-250. DOI: 10.7555/JBR.34.20190043 |
[4] | Li Tiannv, Sun Jin, Hu Yao, Yang Min, Shi Haibin, Tang Lijun. Near-infrared fluorescent labeled CGRRAGGSC peptides for optical imaging of IL-11Rα in athymic mice bearing tumor xenografts[J]. The Journal of Biomedical Research, 2019, 33(6): 391-397. DOI: 10.7555/JBR.33.20180136 |
[5] | Xiaoquan Xu, Feiyun Wu, Yunxiang Chen, Hao Hu, Meiling Bao. CT and multimodal imaging findings of primary orbital Ewing's sarcoma involving the middle cranial fossa: a case report[J]. The Journal of Biomedical Research, 2017, 31(2): 170-174. DOI: 10.7555/JBR.30.20140132 |
[6] | Timothy McAlindon, Eckart Bartnik, Janina S. Ried, Lenore Teichert, Matthias Herrmann, Klaus Flechsenhar. Determination of serum biomarkers in osteoarthritis patients: a previous interventional imaging study revisited[J]. The Journal of Biomedical Research, 2017, 31(1): 25-30. DOI: 10.7555/JBR.31.20150167 |
[7] | Hongming Zhuang, Ion Codreanu. Growing applications of FDG PET-CT imaging in non-oncologic conditions[J]. The Journal of Biomedical Research, 2015, 29(3): 189-202. DOI: 10.7555/JBR.29.20140081 |
[8] | Marina Piccinelli, Ernest Garcia. Multimodality image fusion for diagnosing coronary artery disease[J]. The Journal of Biomedical Research, 2013, 27(6): 439-451. DOI: 10.7555/JBR.27.20130138 |
[9] | Yumin Zhang, Gerard B. Fox. PET imaging for receptor occupancy: meditations on calculation and simplification[J]. The Journal of Biomedical Research, 2012, 26(2): 69-76. DOI: 10.1016/S1674-8301(12)60014-1 |
[10] | Lihua Liu, Ming Zhang, Yuan Wang, Min Li. The relationship between the expression of tumor matrix-metalloproteinase and the characteristics of magnetic resonance imaging of human gliomas[J]. The Journal of Biomedical Research, 2010, 24(2): 124-131. |