4.6

CiteScore

2.2

Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Ameya Paranjpe, Nathan I. Bailey, Santhi Konduri, George C. Bobustuc, Francis Ali-Osman, Mohd. A. Yusuf, Surendra R. Punganuru, Hanumantha Rao Madala, Debasish Basak, AGM Mostofa, Kalkunte S. Srivenugopal. New insights into estrogenic regulation of O6-methylguanine DNA-methyltransferase (MGMT) in human breast cancer cells: Co-degradation of ER-α and MGMT proteins by fulvestrant or O6-benzylguanine indicates fresh avenues for therapy[J]. The Journal of Biomedical Research, 2016, 30(5): 393-410. DOI: 10.7555/JBR.30.20160040
Citation: Ameya Paranjpe, Nathan I. Bailey, Santhi Konduri, George C. Bobustuc, Francis Ali-Osman, Mohd. A. Yusuf, Surendra R. Punganuru, Hanumantha Rao Madala, Debasish Basak, AGM Mostofa, Kalkunte S. Srivenugopal. New insights into estrogenic regulation of O6-methylguanine DNA-methyltransferase (MGMT) in human breast cancer cells: Co-degradation of ER-α and MGMT proteins by fulvestrant or O6-benzylguanine indicates fresh avenues for therapy[J]. The Journal of Biomedical Research, 2016, 30(5): 393-410. DOI: 10.7555/JBR.30.20160040

New insights into estrogenic regulation of O6-methylguanine DNA-methyltransferase (MGMT) in human breast cancer cells: Co-degradation of ER-α and MGMT proteins by fulvestrant or O6-benzylguanine indicates fresh avenues for therapy

Funds: 

This work was supported by grants from the Cancer

More Information
  • Received Date: April 01, 2016
  • Revised Date: April 09, 2016
  • Endocrine therapy using estrogen receptor-α (ER-α) antagonists for attenuating horm2one-driven cell proliferation is a major treatment modality for breast cancers. To exploit any DNA repair deficiencies associated with endocrine therapy, we investigated the functional and physical interactions of ER-α with O6-methylguanine DNA methyltransferase (MGMT), a unique DNA repair protein that confers tumor resistance to various anticancer alkylating agents. The ER-α -positive breast cancer cell lines (MCF-7, T47D) and ER- negative cell lines (MDAMB-468, MDAMB-231), and established inhibitors of ER-α and MGMT, namely, ICI-182,780 (Faslodex) and O6-benzylguanine, respectively, were used to study MGMT- ER interactions. The MGMT gene promoter was found to harbor one full and two half estrogen-responsive elements (EREs) and two antioxidant-responsive elements (AREs). MGMT expression was upregulated by estrogen, downregulated by tamoxifen in Western blot and promoter-linked reporter assays. Similarly, both transient and stable transfections of Nrf-2 (nuclear factor-erythroid 2-related factor-2) increased the levels of MGMT protein and activity 3 to 4-fold reflecting novel regulatory nodes for this drug-resistance determinant. Of the different ER-α antagonists tested, the pure anti-estrogen fulvestrant was most potent in inhibiting the MGMT activity in a dose, time and ER-α dependent manner, similar to O6-benzylguanine. Interestingly, fulvestrant exposure led to a degradation of both ER-α and MGMT proteins and O6-benzylguanine also induced a specific loss of ER-α and MGMT proteins in MCF-7 and T47D breast cancer cells with similar kinetics. Immunoprecipitation revealed a specific association of ER-α and MGMT proteins in breast cancer cells. Furthermore, silencing of MGMT gene expression triggered a decrease in the levels of both MGMT and ER-α proteins. The involvement of proteasome in the drug-induced degradation of both proteins was also demonstrated. Fulvestrant enhanced the cytotoxicity of MGMT-targeted alkylating agents, namely, temozolomide and BCNU by 3 to 4-fold in ER-α positive cells, but not in ER–negative cells. We conclude that MGMT and ER-α proteins exist as a complex and are co-targeted for ubiquitin-conjugation and subsequent proteasomal degradation. The findings offer a clear rationale for combining alkylating agents with endocrine therapy.
  • Related Articles

    [1]Ya Xie, Zifeng Xu, Yumin Zhang, Yisheng Li, Pengyu Du, Chun Wang. First-episode psychiatric disorder risk from SARS-CoV-2 infection: A clinical analysis with Chinese psychiatric inpatients[J]. The Journal of Biomedical Research, 2025, 39(1): 50-60. DOI: 10.7555/JBR.38.20240005
    [2]Zheyue Wang, Qi Tang, Bende Liu, Wenqing Zhang, Yufeng Chen, Ningfei Ji, Yan Peng, Xiaohui Yang, Daixun Cui, Weiyu Kong, Xiaojun Tang, Tingting Yang, Mingshun Zhang, Xinxia Chang, Jin Zhu, Mao Huang, Zhenqing Feng. A SARS-CoV-2 neutralizing antibody discovery by single cell sequencing and molecular modeling[J]. The Journal of Biomedical Research, 2023, 37(3): 166-178. DOI: 10.7555/JBR.36.20220221
    [3]Jiao Chen, Can Zhao, Yingzi Huang, Hao Wang, Xiang Lu, Wei Zhao, Wei Gao. Malnutrition predicts poor outcomes in diabetic COVID-19 patients in Huangshi, Hubei[J]. The Journal of Biomedical Research, 2022, 36(1): 32-38. DOI: 10.7555/JBR.35.20210083
    [4]Liu Zhi, Wang Jianwei, Ge Yiyue, Xu Yuyu, Guo Mengchen, Mi Kai, Xu Rui, Pei Yang, Zhang Qiankun, Luan Xiaoting, Hu Zhibin, Chi Ying, Liu Xingyin. SARS-CoV-2 encoded microRNAs are involved in the process of virus infection and host immune response[J]. The Journal of Biomedical Research, 2021, 35(3): 216-227. DOI: 10.7555/JBR.35.20200154
    [5]Chen Wei, Hu Zhiliang, Yi Changhua, Chi Yun, Xiong Qingfang, Tan Chee Wah, Yi Yongxiang, Wang Lin-Fa. An unusual COVID-19 case with over four months of viral shedding in the presence of low neutralizing antibodies: a case report[J]. The Journal of Biomedical Research, 2020, 34(6): 470-474. DOI: 10.7555/JBR.34.20200099
    [6]Yun Yangfang, Song Hengyi, Ji Yin, Huo Da, Han Feng, Li Fei, Jiang Nan. Identification of therapeutic drugs against COVID-19 through computational investigation on drug repurposing and structural modification[J]. The Journal of Biomedical Research, 2020, 34(6): 458-469. DOI: 10.7555/JBR.34.20200044
    [7]Gorzalski Andrew J., Hartley Paul, Laverdure Chris, Kerwin Heather, Tillett Richard, Verma Subhash, Rossetto Cyprian, Morzunov Sergey, Van Hooser Stephanie, Pandori Mark W.. Characteristics of viral specimens collected from asymptomatic and fatal cases of COVID-19[J]. The Journal of Biomedical Research, 2020, 34(6): 431-436. DOI: 10.7555/JBR.34.20200110
    [8]Mehta Neha, Qiao Renli. Medical management of COVID-19 clinic[J]. The Journal of Biomedical Research, 2020, 34(6): 416-421. DOI: 10.7555/JBR.34.20200118
    [9]Slonim Anthony D., See Helen, Slonim Sheila. Challenges confronting rural hospitals accentuated during COVID-19[J]. The Journal of Biomedical Research, 2020, 34(6): 397-409. DOI: 10.7555/JBR.34.20200112
    [10]Yang Wei. Editorial commentary on special issue of COVID-19 pandemic[J]. The Journal of Biomedical Research, 2020, 34(6): 395-396. DOI: 10.7555/JBR.34.20200701
  • Cited by

    Periodical cited type(3)

    1. Ranjbar M, Asadi M, Nourigorji M, et al. Development of a recombinant nucleocapsid protein-based ELISA for the detection of IgM and IgG antibodies to SARS-CoV-2. Biotechnol Appl Biochem, 2021. DOI:10.1002/bab.2308. Online ahead of print
    2. Castillo-Olivares J, Wells DA, Ferrari M, et al. Analysis of Serological Biomarkers of SARS-CoV-2 Infection in Convalescent Samples From Severe, Moderate and Mild COVID-19 Cases. Front Immunol, 2021, 12: 748291. DOI:10.3389/fimmu.2021.748291
    3. Qasem A, Shaw AM, Elkamel E, et al. Coronavirus Disease 2019 (COVID-19) Diagnostic Tools: A Focus on Detection Technologies and Limitations. Curr Issues Mol Biol, 2021, 43(2): 728-748. DOI:10.3390/cimb43020053

    Other cited types(0)

Catalog

    Article Metrics

    Article views (3928) PDF downloads (602) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return