Ameya Paranjpe, Nathan I. Bailey, Santhi Konduri, George C. Bobustuc, Francis Ali-Osman, Mohd. A. Yusuf, Surendra R. Punganuru, Hanumantha Rao Madala, Debasish Basak, AGM Mostofa, Kalkunte S. Srivenugopal. New insights into estrogenic regulation of O6-methylguanine DNA-methyltransferase (MGMT) in human breast cancer cells: Co-degradation of ER-α and MGMT proteins by fulvestrant or O6-benzylguanine indicates fresh avenues for therapy[J]. The Journal of Biomedical Research, 2016, 30(5): 393-410. DOI: 10.7555/JBR.30.20160040
Citation:
Ameya Paranjpe, Nathan I. Bailey, Santhi Konduri, George C. Bobustuc, Francis Ali-Osman, Mohd. A. Yusuf, Surendra R. Punganuru, Hanumantha Rao Madala, Debasish Basak, AGM Mostofa, Kalkunte S. Srivenugopal. New insights into estrogenic regulation of O6-methylguanine DNA-methyltransferase (MGMT) in human breast cancer cells: Co-degradation of ER-α and MGMT proteins by fulvestrant or O6-benzylguanine indicates fresh avenues for therapy[J]. The Journal of Biomedical Research, 2016, 30(5): 393-410. DOI: 10.7555/JBR.30.20160040
Ameya Paranjpe, Nathan I. Bailey, Santhi Konduri, George C. Bobustuc, Francis Ali-Osman, Mohd. A. Yusuf, Surendra R. Punganuru, Hanumantha Rao Madala, Debasish Basak, AGM Mostofa, Kalkunte S. Srivenugopal. New insights into estrogenic regulation of O6-methylguanine DNA-methyltransferase (MGMT) in human breast cancer cells: Co-degradation of ER-α and MGMT proteins by fulvestrant or O6-benzylguanine indicates fresh avenues for therapy[J]. The Journal of Biomedical Research, 2016, 30(5): 393-410. DOI: 10.7555/JBR.30.20160040
Citation:
Ameya Paranjpe, Nathan I. Bailey, Santhi Konduri, George C. Bobustuc, Francis Ali-Osman, Mohd. A. Yusuf, Surendra R. Punganuru, Hanumantha Rao Madala, Debasish Basak, AGM Mostofa, Kalkunte S. Srivenugopal. New insights into estrogenic regulation of O6-methylguanine DNA-methyltransferase (MGMT) in human breast cancer cells: Co-degradation of ER-α and MGMT proteins by fulvestrant or O6-benzylguanine indicates fresh avenues for therapy[J]. The Journal of Biomedical Research, 2016, 30(5): 393-410. DOI: 10.7555/JBR.30.20160040
New insights into estrogenic regulation of O6-methylguanine DNA-methyltransferase (MGMT) in human breast cancer cells: Co-degradation of ER-α and MGMT proteins by fulvestrant or O6-benzylguanine indicates fresh avenues for therapy
Endocrine therapy using estrogen receptor-α (ER-α) antagonists for attenuating horm2one-driven cell proliferation is a major treatment modality for breast cancers. To exploit any DNA repair deficiencies associated with endocrine therapy, we investigated the functional and physical interactions of ER-α with O6-methylguanine DNA methyltransferase (MGMT), a unique DNA repair protein that confers tumor resistance to various anticancer alkylating agents. The ER-α -positive breast cancer cell lines (MCF-7, T47D) and ER- negative cell lines (MDAMB-468, MDAMB-231), and established inhibitors of ER-α and MGMT, namely, ICI-182,780 (Faslodex) and O6-benzylguanine, respectively, were used to study MGMT- ER interactions. The MGMT gene promoter was found to harbor one full and two half estrogen-responsive elements (EREs) and two antioxidant-responsive elements (AREs). MGMT expression was upregulated by estrogen, downregulated by tamoxifen in Western blot and promoter-linked reporter assays. Similarly, both transient and stable transfections of Nrf-2 (nuclear factor-erythroid 2-related factor-2) increased the levels of MGMT protein and activity 3 to 4-fold reflecting novel regulatory nodes for this drug-resistance determinant. Of the different ER-α antagonists tested, the pure anti-estrogen fulvestrant was most potent in inhibiting the MGMT activity in a dose, time and ER-α dependent manner, similar to O6-benzylguanine. Interestingly, fulvestrant exposure led to a degradation of both ER-α and MGMT proteins and O6-benzylguanine also induced a specific loss of ER-α and MGMT proteins in MCF-7 and T47D breast cancer cells with similar kinetics. Immunoprecipitation revealed a specific association of ER-α and MGMT proteins in breast cancer cells. Furthermore, silencing of MGMT gene expression triggered a decrease in the levels of both MGMT and ER-α proteins. The involvement of proteasome in the drug-induced degradation of both proteins was also demonstrated. Fulvestrant enhanced the cytotoxicity of MGMT-targeted alkylating agents, namely, temozolomide and BCNU by 3 to 4-fold in ER-α positive cells, but not in ER–negative cells. We conclude that MGMT and ER-α proteins exist as a complex and are co-targeted for ubiquitin-conjugation and subsequent proteasomal degradation. The findings offer a clear rationale for combining alkylating agents with endocrine therapy.
Ranjbar M, Asadi M, Nourigorji M, et al. Development of a recombinant nucleocapsid protein-based ELISA for the detection of IgM and IgG antibodies to SARS-CoV-2. Biotechnol Appl Biochem, 2021.
DOI:10.1002/bab.2308. Online ahead of print
2.
Castillo-Olivares J, Wells DA, Ferrari M, et al. Analysis of Serological Biomarkers of SARS-CoV-2 Infection in Convalescent Samples From Severe, Moderate and Mild COVID-19 Cases. Front Immunol, 2021, 12: 748291.
DOI:10.3389/fimmu.2021.748291
3.
Qasem A, Shaw AM, Elkamel E, et al. Coronavirus Disease 2019 (COVID-19) Diagnostic Tools: A Focus on Detection Technologies and Limitations. Curr Issues Mol Biol, 2021, 43(2): 728-748.
DOI:10.3390/cimb43020053