4.6

CiteScore

2.2

Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Jason D. Whitt, Adam B. Keeton, Bernard D. Gary, Larry A. Sklar, Kamlesh Sodani, Zhe-Sheng Chen, Gary A. Piazza. Sulindac sulfide selectively increases sensitivity of ABCC1 expressing tumor cells to doxorubicin and glutathione depletion[J]. The Journal of Biomedical Research, 2016, 30(2): 120-133. DOI: 10.7555/JBR.30.20150108
Citation: Jason D. Whitt, Adam B. Keeton, Bernard D. Gary, Larry A. Sklar, Kamlesh Sodani, Zhe-Sheng Chen, Gary A. Piazza. Sulindac sulfide selectively increases sensitivity of ABCC1 expressing tumor cells to doxorubicin and glutathione depletion[J]. The Journal of Biomedical Research, 2016, 30(2): 120-133. DOI: 10.7555/JBR.30.20150108

Sulindac sulfide selectively increases sensitivity of ABCC1 expressing tumor cells to doxorubicin and glutathione depletion

Funds: 

NIH grants CA131378 (GAP),CA148817 (GAP), CA155638 (GAP), U54HG- 003917 (GAP), U54MH084690 (LAS), and U54- MH074425 (LAS)

More Information
  • Received Date: August 02, 2015
  • Revised Date: August 24, 2015
  • ATP-binding cassette (ABC) transporters ABCC1 (MRP1), ABCB1 (P-gp), and ABCG2 (BCRP) contribute to chemotherapy failure. The primary goals of this study were to characterize the efficacy and mechanism of the nonsteroidal anti-inflammatory drug (NSAID), sulindac sulfide, to reverse ABCC1 mediated resistance to chemotherapeutic drugs and to determine if sulindac sulfide can influence sensitivity to chemotherapeutic drugs independently of drug efflux. Cytotoxicity assays were performed to measure resistance of ABC-expressing cell lines to doxorubicin and other chemotherapeutic drugs. NSAIDs were tested for the ability to restore sensitivity to resistance selected tumor cell lines, as well as a large panel of standard tumor cell lines. Other experiments characterized the mechanism by which sulindac sulfide inhibits ABCC1 substrate and co-substrate (GSH) transport in isolated membrane vesicles and intact cells. Selective reversal of multi-drug resistance (MDR), decreased efflux of doxorubicin,and fluorescent substrates were demonstrated by sulindac sulfide and a related NSAID, indomethacin, in resistance selected and engineered cell lines expressing ABCC1, but not ABCB1 or ABCG2. Sulindac sulfide also inhibited transport of leukotriene C4 into membrane vesicles. Sulindac sulfide enhanced the sensitivity to doxorubicin in 24 of 47 tumor cell lines, including all melanoma lines tested (7-7). Sulindac sulfide also decreased intracellular GSH in ABCC1 expressing cells, while the glutathione synthesis inhibitor, BSO, selectively increased sensitivity to sulindac sulfide induced cytotoxicity. Sulindac sulfide potently and selectively reverses ABCC1-mediated MDR at clinically achievable concentrations. ABCC1 expressing tumors may be highly sensitive to the direct cytotoxicity of sulindac sulfide, and in combination with chemotherapeutic drugs that induce oxidative stress.
  • Related Articles

    [1]Fangyuan Li, Yaohui Wang, Xiaochun Ping, Jiani C. Yin, Fufeng Wang, Xian Zhang, Xiang Li, Jing Zhai, Lizong Shen. Molecular evolution of intestinal-type early gastric cancer according to Correa cascade[J]. The Journal of Biomedical Research. DOI: 10.7555/JBR.38.20240118
    [2]Zhang Weifeng, Chen Han, Zhang Guoxin, Jin Guangfu. A nomogram for predicting lymph node metastasis in superficial esophageal squamous cell carcinoma[J]. The Journal of Biomedical Research, 2021, 35(5): 361-370. DOI: 10.7555/JBR.35.20210034
    [3]Huanqiang Wang, Congying Yang, Siyuan Wang, Tian Wang, Jingling Han, Kai Wei, Fucun Liu, Jida Xu, Xianzhen Peng, Jianming Wang. Cell-free plasma hypermethylated CASZ1, CDH13 and ING2 are promising biomarkers of esophageal cancer[J]. The Journal of Biomedical Research, 2018, 32(6): 424-433. DOI: 10.7555/JBR.32.20170065
    [4]Haibo Tong, Chunlin Zou, Siyuan Qin, Jie Meng, Evan T. Keller, Jian Zhang, Yi Lu. Prostate cancer tends to metastasize in the bone-mimicking microenvironment via activating NF-kB signaling[J]. The Journal of Biomedical Research, 2018, 32(5): 343-353. DOI: 10.7555/JBR.32.20180035
    [5]Xinli Liu. Bone site-specific delivery of siRNA[J]. The Journal of Biomedical Research, 2016, 30(4): 264-271. DOI: 10.7555/JBR.30.20150110
    [6]Nisha Gupta, Dan G. Duda. Role of stromal cell-derived factor 1α pathway in bone metastatic prostate cancer[J]. The Journal of Biomedical Research, 2016, 30(3): 181-185. DOI: 10.7555/JBR.30.20150114
    [7]Yang Zhou, Ouyang Ling, Li Bo. Expression and significance of lysyl oxidase-like 1 and fibulin-5 in the cardinal ligament tissue of patients with pelvic floor dysfunction[J]. The Journal of Biomedical Research, 2013, 27(1): 23-28. DOI: 10.7555/JBR.27.20110142
    [8]Di Liu, Peng Xia, Dongmei Diao, Yao Cheng, Hao Zhang, Dawei Yuan, Chen Huang, Chengxue Dang. MiRNA-429 suppresses the growth of gastric cancer cells in vitro[J]. The Journal of Biomedical Research, 2012, 26(5): 389-393. DOI: 10.7555/JBR.26.20120029
    [9]Yao Liu, Qin Zhang, Chuanli Ren, Yanbing Ding, Guangfu Jin, Zhibin Hu, Yaochu Xu, Hongbing Shen. A germline variant N375S in MET and gastric cancer susceptibility in a Chinese population[J]. The Journal of Biomedical Research, 2012, 26(5): 315-318. DOI: 10.7555/JBR.26.20110087
    [10]Li Liu, Qi Chen, Rensheng Lai, Xiaobin Wu, Xiaoyu Wu, Fukun Liu, Guohua Xu, Yong Ji. Elevated expression of mature miR-21 and miR-155 in cancerous gastric tissues from Chinese patients with gastric cancer[J]. The Journal of Biomedical Research, 2010, 24(3): 187-197.
  • Cited by

    Periodical cited type(23)

    1. Jia Z, Zhang X, Li Z, et al. Hydrogen sulfide mitigates ox‑LDL‑induced NLRP3/caspase‑1/GSDMD dependent macrophage pyroptosis by S‑sulfhydrating caspase‑1. Mol Med Rep, 2024, 30(2): 135. DOI:10.3892/mmr.2024.13259
    2. Flori L, Benedetti G, Calderone V, et al. Hydrogen Sulfide and Irisin, Potential Allies in Ensuring Cardiovascular Health. Antioxidants (Basel), 2024, 13(5): 543. DOI:10.3390/antiox13050543
    3. Gonzalez AL, Dungan MM, Smart CD, et al. Inflammation Resolution in the Cardiovascular System: Arterial Hypertension, Atherosclerosis, and Ischemic Heart Disease. Antioxid Redox Signal, 2024, 40(4-6): 292-316. DOI:10.1089/ars.2023.0284
    4. Andrés CMC, Pérez de la Lastra JM, Andrés Juan C, et al. Chemistry of Hydrogen Sulfide-Pathological and Physiological Functions in Mammalian Cells. Cells, 2023, 12(23): 2684. DOI:10.3390/cells12232684
    5. Bechelli C, Macabrey D, Deglise S, et al. Clinical Potential of Hydrogen Sulfide in Peripheral Arterial Disease. Int J Mol Sci, 2023, 24(12): 9955. DOI:10.3390/ijms24129955
    6. Munteanu C. Hydrogen Sulfide and Oxygen Homeostasis in Atherosclerosis: A Systematic Review from Molecular Biology to Therapeutic Perspectives. Int J Mol Sci, 2023, 24(9): 8376. DOI:10.3390/ijms24098376
    7. Star BS, van der Slikke EC, Ransy C, et al. GYY4137-Derived Hydrogen Sulfide Donates Electrons to the Mitochondrial Electron Transport Chain via Sulfide: Quinone Oxidoreductase in Endothelial Cells. Antioxidants (Basel), 2023, 12(3): 587. DOI:10.3390/antiox12030587
    8. Zhang X, Wang Z, Zheng Y, et al. Inhibitors of the NLRP3 inflammasome pathway as promising therapeutic candidates for inflammatory diseases (Review). Int J Mol Med, 2023, 51(4): 35. DOI:10.3892/ijmm.2023.5238
    9. Liu J, Mesfin FM, Hunter CE, et al. Recent Development of the Molecular and Cellular Mechanisms of Hydrogen Sulfide Gasotransmitter. Antioxidants (Basel), 2022, 11(9): 1788. DOI:10.3390/antiox11091788
    10. Zhu C, Liu Q, Li X, et al. Hydrogen sulfide: A new therapeutic target in vascular diseases. Front Endocrinol (Lausanne), 2022, 13: 934231. DOI:10.3389/fendo.2022.934231
    11. Munteanu C, Rotariu M, Turnea M, et al. Recent Advances in Molecular Research on Hydrogen Sulfide (H2S) Role in Diabetes Mellitus (DM)-A Systematic Review. Int J Mol Sci, 2022, 23(12): 6720. DOI:10.3390/ijms23126720
    12. Zhao H, Liu H, Yang Y, et al. The Role of H2S Regulating NLRP3 Inflammasome in Diabetes. Int J Mol Sci, 2022, 23(9): 4818. DOI:10.3390/ijms23094818
    13. Guo Z, Du X, Zhang Y, et al. Diosmin Alleviates Venous Injury and Muscle Damage in a Mouse Model of Iliac Vein Stenosis. Front Cardiovasc Med, 2022, 8: 785554. DOI:10.3389/fcvm.2021.785554
    14. Doran AC. Inflammation Resolution: Implications for Atherosclerosis. Circ Res, 2022, 130(1): 130-148. DOI:10.1161/CIRCRESAHA.121.319822
    15. Wu W, Tan QY, Xi FF, et al. NLRP3 inflammasome activation in gestational diabetes mellitus placentas is associated with hydrogen sulfide synthetase deficiency. Exp Ther Med, 2022, 23(1): 94. DOI:10.3892/etm.2021.11017
    16. Zhou M, Chen JY, Chao ML, et al. S-nitrosylation of c-Jun N-terminal kinase mediates pressure overload-induced cardiac dysfunction and fibrosis. Acta Pharmacol Sin, 2022, 43(3): 602-612. DOI:10.1038/s41401-021-00674-9
    17. Rose P, Zhu YZ, Moore PK. Hydrogen Sulfide and the Immune System. Adv Exp Med Biol, 2021, 1315: 99-128. DOI:10.1007/978-981-16-0991-6_5
    18. Wang YZ, Ngowi EE, Wang D, et al. The Potential of Hydrogen Sulfide Donors in Treating Cardiovascular Diseases. Int J Mol Sci, 2021, 22(4): 2194. DOI:10.3390/ijms22042194
    19. Gáll T, Pethő D, Nagy A, et al. Therapeutic Potential of Carbon Monoxide (CO) and Hydrogen Sulfide (H2S) in Hemolytic and Hemorrhagic Vascular Disorders-Interaction between the Heme Oxygenase and H2S-Producing Systems. Int J Mol Sci, 2020, 22(1): 47. DOI:10.3390/ijms22010047
    20. Mohammad G, Radhakrishnan R, Kowluru RA. Hydrogen Sulfide: A Potential Therapeutic Target in the Development of Diabetic Retinopathy. Invest Ophthalmol Vis Sci, 2020, 61(14): 35. DOI:10.1167/iovs.61.14.35
    21. Rahman MA, Glasgow JN, Nadeem S, et al. The Role of Host-Generated H2S in Microbial Pathogenesis: New Perspectives on Tuberculosis. Front Cell Infect Microbiol, 2020, 10: 586923. DOI:10.3389/fcimb.2020.586923
    22. Wang H, Shi X, Qiu M, et al. Hydrogen Sulfide Plays an Important Role by Influencing NLRP3 inflammasome. Int J Biol Sci, 2020, 16(14): 2752-2760. DOI:10.7150/ijbs.47595
    23. Tian Y, Song H, Qin W, et al. Mammalian STE20-Like Kinase 2 Promotes Lipopolysaccharides-Mediated Cardiomyocyte Inflammation and Apoptosis by Enhancing Mitochondrial Fission. Front Physiol, 2020, 11: 897. DOI:10.3389/fphys.2020.00897

    Other cited types(0)

Catalog

    Article Metrics

    Article views (3689) PDF downloads (655) Cited by(23)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return