Citation: | Lan Ma, Haiyan Chu, Meilin Wang, Zhengdong Zhang. Biological functions and potential implications of circular RNAs[J]. The Journal of Biomedical Research, 2023, 37(2): 89-99. DOI: 10.7555/JBR.36.20220095 |
CLC number: Q522, Document code: A
The authors reported no conflict of interests.
[1] |
Sanger HL, Klotz G, Riesner D, et al. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures[J]. Proc Natl Acad Sci U S A, 1976, 73(11): 3852–3856. doi: 10.1073/pnas.73.11.3852
|
[2] |
Capel B, Swain A, Nicolis S, et al. Circular transcripts of the testis-determining gene Sry in adult mouse testis[J]. Cell, 1993, 73(5): 1019–1030. doi: 10.1016/0092-8674(93)90279-Y
|
[3] |
Szabo L, Salzman J. Detecting circular RNAs: bioinformatic and experimental challenges[J]. Nat Rev Genet, 2016, 17(11): 679–692. doi: 10.1038/nrg.2016.114
|
[4] |
Huang J, Chen M, Xu K, et al. Microarray expression profile and functional analysis of circular RNAs in choroidal neovascularization[J]. J Biomed Res, 2019, 34(1): 67–74. doi: 10.7555/JBR.33.20190063
|
[5] |
Fang Z, Jiang C, Li S. The potential regulatory roles of circular RNAs in tumor immunology and immunotherapy[J]. Front Immunol, 2021, 11: 617583. doi: 10.3389/fimmu.2020.617583
|
[6] |
Kristensen LS, Jakobsen T, Hager H, et al. The emerging roles of circRNAs in cancer and oncology[J]. Nat Rev Clin Oncol, 2022, 19(3): 188–206. doi: 10.1038/s41571-021-00585-y
|
[7] |
Mei X, Chen S. Circular RNAs in cardiovascular diseases[J]. Pharmacol Ther, 2022, 232: 107991. doi: 10.1016/j.pharmthera.2021.107991
|
[8] |
Li F, Yang Q, He AT, et al. Circular RNAs in cancer: limitations in functional studies and diagnostic potential[J]. Semin Cancer Biol, 2021, 75: 49–61. doi: 10.1016/j.semcancer.2020.10.002
|
[9] |
Hong W, Xue M, Jiang J, et al. Circular RNA circ-CPA4/ let-7 miRNA/PD-L1 axis regulates cell growth, stemness, drug resistance and immune evasion in non-small cell lung cancer (NSCLC)[J]. J Exp Clin Cancer Res, 2020, 39(1): 149. doi: 10.1186/s13046-020-01648-1
|
[10] |
Xu J, Wan Z, Tang M, et al. N6-methyladenosine-modified CircRNA-SORE sustains sorafenib resistance in hepatocellular carcinoma by regulating β-catenin signaling[J]. Mol Cancer, 2020, 19(1): 163. doi: 10.1186/s12943-020-01281-8
|
[11] |
Zhang Y, Zhang X, Chen T, et al. Circular intronic long noncoding RNAs[J]. Mol Cell, 2013, 51(6): 792–806. doi: 10.1016/j.molcel.2013.08.017
|
[12] |
Zhang X, Wang H, Zhang Y, et al. Complementary sequence-mediated exon circularization[J]. Cell, 2014, 159(1): 134–147. doi: 10.1016/j.cell.2014.09.001
|
[13] |
Li Z, Huang C, Bao C, et al. Exon-intron circular RNAs regulate transcription in the nucleus[J]. Nat Struct Mol Biol, 2015, 22(3): 256–264. doi: 10.1038/nsmb.2959
|
[14] |
Guarnerio J, Bezzi M, Jeong JC, et al. Oncogenic role of fusion-circRNAs derived from cancer-associated chromosomal translocations[J]. Cell, 2016, 165(2): 289–302. doi: 10.1016/j.cell.2016.03.020
|
[15] |
Vo JN, Cieslik M, Zhang Y, et al. The landscape of circular RNA in cancer[J]. Cell, 2019, 176(4): 869–881.e13. doi: 10.1016/j.cell.2018.12.021
|
[16] |
Jeck WR, Sorrentino JA, Wang K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats[J]. RNA, 2013, 19(2): 141–157. doi: 10.1261/rna.035667.112
|
[17] |
Ashwal-Fluss R, Meyer M, Pamudurti NR, et al. circRNA biogenesis competes with pre-mRNA splicing[J]. Mol Cell, 2014, 56(1): 55–66. doi: 10.1016/j.molcel.2014.08.019
|
[18] |
Liang D, Wilusz JE. Short intronic repeat sequences facilitate circular RNA production[J]. Genes Dev, 2014, 28(20): 2233–2247. doi: 10.1101/gad.251926.114
|
[19] |
Zhang X, Dong R, Zhang Y, et al. Diverse alternative back-splicing and alternative splicing landscape of circular RNAs[J]. Genome Res, 2016, 26(9): 1277–1287. doi: 10.1101/gr.202895.115
|
[20] |
Conn SJ, Pillman KA, Toubia J, et al. The RNA binding protein quaking regulates formation of circRNAs[J]. Cell, 2015, 160(6): 1125–1134. doi: 10.1016/j.cell.2015.02.014
|
[21] |
Errichelli L, Dini Modigliani S, Laneve P, et al. FUS affects circular RNA expression in murine embryonic stem cell-derived motor neurons[J]. Nat Commun, 2017, 8: 14741. doi: 10.1038/ncomms14741
|
[22] |
Stagsted LVW, O'Leary ET, Ebbesen KK, et al. The RNA-binding protein SFPQ preserves long-intron splicing and regulates circRNA biogenesis in mammals[J]. Elife, 2021, 10: e63088. doi: 10.7554/eLife.63088
|
[23] |
Ivanov A, Memczak S, Wyler E, et al. Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals[J]. Cell Rep, 2015, 10(2): 170–177. doi: 10.1016/j.celrep.2014.12.019
|
[24] |
Eisenberg E, Levanon EY. A-to-I RNA editing-immune protector and transcriptome diversifier[J]. Nat Rev Genet, 2018, 19(8): 473–490. doi: 10.1038/s41576-018-0006-1
|
[25] |
Aktaş T, Avşar Ilık İ, Maticzka D, et al. DHX9 suppresses RNA processing defects originating from the Alu invasion of the human genome[J]. Nature, 2017, 544(7648): 115–119. doi: 10.1038/nature21715
|
[26] |
Zheng X, Huang M, Xing L, et al. The circRNA circSEPT9 mediated by E2F1 and EIF4A3 facilitates the carcinogenesis and development of triple-negative breast cancer[J]. Mol Cancer, 2020, 19(1): 73. doi: 10.1186/s12943-020-01183-9
|
[27] |
Tang Z, Li X, Zhao J, et al. TRCirc: a resource for transcriptional regulation information of circRNAs[J]. Brief Bioinform, 2019, 20(6): 2327–2333. doi: 10.1093/bib/bby083
|
[28] |
Wang J, Zhang Y, Song H, et al. The circular RNA circSPARC enhances the migration and proliferation of colorectal cancer by regulating the JAK/STAT pathway[J]. Mol Cancer, 2021, 20(1): 81. doi: 10.1186/s12943-021-01375-x
|
[29] |
Jiang T, Wang H, Liu L, et al. CircIL4R activates the PI3K/AKT signaling pathway via the miR-761/TRIM29/PHLPP1 axis and promotes proliferation and metastasis in colorectal cancer[J]. Mol Cancer, 2021, 20(1): 167. doi: 10.1186/s12943-021-01474-9
|
[30] |
Zhong Y, Du Y, Yang X, et al. Circular RNAs function as ceRNAs to regulate and control human cancer progression[J]. Mol Cancer, 2018, 17(1): 79. doi: 10.1186/s12943-018-0827-8
|
[31] |
Kristensen LS, Andersen MS, Stagsted LVW, et al. The biogenesis, biology and characterization of circular RNAs[J]. Nat Rev Genet, 2019, 20(11): 675–691. doi: 10.1038/s41576-019-0158-7
|
[32] |
Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency[J]. Nature, 2013, 495(7441): 333–338. doi: 10.1038/nature11928
|
[33] |
Piwecka M, Glažar P, Hernandez-Miranda LR, et al. Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function[J]. Science, 2017, 357(6357): eaam8526. doi: 10.1126/science.aam8526
|
[34] |
Yao W, Li Y, Han L, et al. The CDR1as/miR-7/TGFBR2 axis modulates EMT in silica-induced pulmonary fibrosis[J]. Toxicol Sci, 2018, 166(2): 465–478. doi: 10.1093/toxsci/kfy221
|
[35] |
Wang J, Zhu M, Song J, et al. The circular RNA circTXNRD1 promoted ambient particulate matter-induced inflammation in human bronchial epithelial cells by regulating miR-892a/COX-2 axis[J]. Chemosphere, 2022, 286: 131614. doi: 10.1016/j.chemosphere.2021.131614
|
[36] |
Li M, Hua Q, Shao Y, et al. Circular RNA circBbs9 promotes PM2.5-induced lung inflammation in mice via NLRP3 inflammasome activation[J]. Environ Int, 2020, 143: 105976. doi: 10.1016/j.envint.2020.105976
|
[37] |
Zhou M, Li L, Chen B, et al. Circ-SHPRH suppresses cadmium-induced transformation of human bronchial epithelial cells by regulating QKI expression via miR-224–5p[J]. Ecotoxicol Environ Saf, 2021, 220: 112378. doi: 10.1016/j.ecoenv.2021.112378
|
[38] |
Dai X, Chen C, Yang Q, et al. Exosomal circRNA_100284 from arsenite-transformed cells, via microRNA-217 regulation of EZH2, is involved in the malignant transformation of human hepatic cells by accelerating the cell cycle and promoting cell proliferation[J]. Cell Death Dis, 2018, 9(5): 454. doi: 10.1038/s41419-018-0485-1
|
[39] |
Huang A, Zheng H, Wu Z, et al. Circular RNA-protein interactions: functions, mechanisms, and identification[J]. Theranostics, 2020, 10(8): 3503–3517. doi: 10.7150/thno.42174
|
[40] |
Zang J, Lu D, Xu A. The interaction of circRNAs and RNA binding proteins: an important part of circRNA maintenance and function[J]. J Neurosci Res, 2020, 98(1): 87–97. doi: 10.1002/jnr.24356
|
[41] |
Wang Z, Lei X. Prediction of RBP binding sites on circRNAs using an LSTM-based deep sequence learning architecture[J]. Brief Bioinform, 2021, 22(6): bbab342. doi: 10.1093/bib/bbab342
|
[42] |
Du WW, Yang W, Li X, et al. A circular RNA circ-DNMT1 enhances breast cancer progression by activating autophagy[J]. Oncogene, 2018, 37(44): 5829–5842. doi: 10.1038/s41388-018-0369-y
|
[43] |
Abdelmohsen K, Panda AC, Munk R, et al. Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1[J]. RNA Biol, 2017, 14(3): 361–369. doi: 10.1080/15476286.2017.1279788
|
[44] |
Du WW, Yang W, Liu E, et al. Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2[J]. Nucleic Acids Res, 2016, 44(6): 2846–2858. doi: 10.1093/nar/gkw027
|
[45] |
Du WW, Yang W, Chen Y, et al. Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses[J]. Eur Heart J, 2017, 38(18): 1402–1412. doi: 10.1093/eurheartj/ehw001
|
[46] |
Chen R, Chen X, Xia L, et al. N6-methyladenosine modification of circNSUN2 facilitates cytoplasmic export and stabilizes HMGA2 to promote colorectal liver metastasis[J]. Nat Commun, 2019, 10(1): 4695. doi: 10.1038/s41467-019-12651-2
|
[47] |
Jia Y, Li X, Nan A, et al. Circular RNA 406961 interacts with ILF2 to regulate PM2.5-induced inflammatory responses in human bronchial epithelial cells via activation of STAT3/JNK pathways[J]. Environ Int, 2020, 141: 105755. doi: 10.1016/j.envint.2020.105755
|
[48] |
Zhou Z, Jiang R, Yang X, et al. circRNA mediates silica-induced macrophage activation via HECTD1/ZC3H12A-dependent ubiquitination[J]. Theranostics, 2018, 8(2): 575–592. doi: 10.7150/thno.21648
|
[49] |
Bolisetty MT, Graveley BR. Circuitous route to transcription regulation[J]. Mol Cell, 2013, 51(6): 705–706. doi: 10.1016/j.molcel.2013.09.012
|
[50] |
Ma N, Pan J, Wen Y, et al. RETRACTED: circTulp4 functions in Alzheimer's disease pathogenesis by regulating its parental gene, Tulp4[J]. Mol Ther, 2021, 29(6): 2167–2181. doi: 10.1016/j.ymthe.2021.02.008
|
[51] |
Chen N, Zhao G, Yan X, et al. A novel FLI1 exonic circular RNA promotes metastasis in breast cancer by coordinately regulating TET1 and DNMT1[J]. Genome Biol, 2018, 19(1): 218. doi: 10.1186/s13059-018-1594-y
|
[52] |
Gong X, Tian M, Cao N, et al. Circular RNA circEsyt2 regulates vascular smooth muscle cell remodeling via splicing regulation[J]. J Clin Invest, 2021, 131(24): e147031. doi: 10.1172/JCI147031
|
[53] |
Wu N, Yuan Z, Du KY, et al. Translation of yes-associated protein (YAP) was antagonized by its circular RNA via suppressing the assembly of the translation initiation machinery[J]. Cell Death Differ, 2019, 26(12): 2758–2773. doi: 10.1038/s41418-019-0337-2
|
[54] |
Pamudurti NR, Bartok O, Jens M, et al. Translation of CircRNAs[J]. Mol Cell, 2017, 66(1): 9–21.e7. doi: 10.1016/j.molcel.2017.02.021
|
[55] |
Wang Y, Wu C, Du Y, et al. Expanding uncapped translation and emerging function of circular RNA in carcinomas and noncarcinomas[J]. Mol Cancer, 2022, 21(1): 13. doi: 10.1186/s12943-021-01484-7
|
[56] |
Legnini I, Di Timoteo G, Rossi F, et al. Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis[J]. Mol Cell, 2017, 66(1): 22–37.e9. doi: 10.1016/j.molcel.2017.02.017
|
[57] |
Zhang M, Zhao K, Xu X, et al. A peptide encoded by circular form of LINC-PINT suppresses oncogenic transcriptional elongation in glioblastoma[J]. Nat Commun, 2018, 9(1): 4475. doi: 10.1038/s41467-018-06862-2
|
[58] |
Zhang M, Huang N, Yang X, et al. A novel protein encoded by the circular form of the SHPRH gene suppresses glioma tumorigenesis[J]. Oncogene, 2018, 37(13): 1805–1814. doi: 10.1038/s41388-017-0019-9
|
[59] |
Meyer KD, Patil DP, Zhou J, et al. 5' UTR m6 A promotes cap-independent translation[J]. Cell, 2015, 163(4): 999–1010. doi: 10.1016/j.cell.2015.10.012
|
[60] |
Yang Y, Fan X, Mao M, et al. Extensive translation of circular RNAs driven by N6-methyladenosine[J]. Cell Res, 2017, 27(5): 626–641. doi: 10.1038/cr.2017.31
|
[61] |
Zhou J, Wan J, Gao X, et al. Dynamic m6A mRNA methylation directs translational control of heat shock response[J]. Nature, 2015, 526(7574): 591–594. doi: 10.1038/nature15377
|
[62] |
Abe N, Matsumoto K, Nishihara M, et al. Rolling circle translation of circular RNA in living human cells[J]. Sci Rep, 2015, 5: 16435. doi: 10.1038/srep16435
|
[63] |
Liu Y, Li Z, Zhang M, et al. Rolling-translated EGFR variants sustain EGFR signaling and promote glioblastoma tumorigenicity[J]. Neuro Oncol, 2021, 23(5): 743–756. doi: 10.1093/neuonc/noaa279
|
[64] |
Glažar P, Papavasileiou P, Rajewsky N. circBase: a database for circular RNAs[J]. RNA, 2014, 20(11): 1666–1670. doi: 10.1261/rna.043687.113
|
[65] |
Liu M, Wang Q, Shen J, et al. Circbank: a comprehensive database for circRNA with standard nomenclature[J]. RNA Biol, 2019, 16(7): 899–905. doi: 10.1080/15476286.2019.1600395
|
[66] |
Dong R, Ma X, Li G, et al. CIRCpedia v2: an updated database for comprehensive circular RNA annotation and expression comparison[J]. Genomics Proteomics Bioinformatics, 2018, 16(4): 226–233. doi: 10.1016/j.gpb.2018.08.001
|
[67] |
Xie F, Liu S, Wang J, et al. deepBase v3.0: expression atlas and interactive analysis of ncRNAs from thousands of deep-sequencing data[J]. Nucleic Acids Res, 2021, 49(D1): D877–D883. doi: 10.1093/nar/gkaa1039
|
[68] |
Dudekula DB, Panda AC, Grammatikakis I, et al. CircInteractome: a web tool for exploring circular RNAs and their interacting proteins and microRNAs[J]. RNA Biol, 2016, 13(1): 34–42. doi: 10.1080/15476286.2015.1128065
|
[69] |
Chen Y, Yao L, Tang Y, et al. CircNet 2.0: an updated database for exploring circular RNA regulatory networks in cancers[J]. Nucleic Acids Res, 2022, 50(D1): D93–D101. doi: 10.1093/nar/gkab1036
|
[70] |
Wu W, Ji P, Zhao F. CircAtlas: an integrated resource of one million highly accurate circular RNAs from 1070 vertebrate transcriptomes[J]. Genome Biol, 2020, 21(1): 101. doi: 10.1186/s13059-020-02018-y
|
[71] |
Li JH, Liu S, Zhou H, et al. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data[J]. Nucleic Acids Res, 2014, 42(Database issue): D92–D97. doi: 10.1093/nar/gkt1248.
|
[72] |
Chen X, Han P, Zhou T, et al. circRNADb: a comprehensive database for human circular RNAs with protein-coding annotations[J]. Sci Rep, 2016, 6: 34985. doi: 10.1038/srep34985
|
[73] |
Huang W, Ling Y, Zhang S, et al. TransCirc: an interactive database for translatable circular RNAs based on multi-omics evidence[J]. Nucleic Acids Res, 2021, 49(D1): D236–D242. doi: 10.1093/nar/gkaa823
|
[74] |
Li H, Xie M, Wang Y, et al. riboCIRC: a comprehensive database of translatable circRNAs[J]. Genome Biol, 2021, 22(1): 79. doi: 10.1186/s13059-021-02300-7
|
[75] |
Feng J, Chen W, Dong X, et al. CSCD2: an integrated interactional database of cancer-specific circular RNAs[J]. Nucleic Acids Res, 2022, 50(D1): D1179–D1183. doi: 10.1093/nar/gkab830
|
[76] |
Fan C, Lei X, Tie J, et al. CircR2Disease v2.0: an updated web server for experimentally validated circRNA-disease associations and its application[J]. Genomics Proteomics Bioinformatics, 2021, S1672-0229(21): 00246-1. doi: 10.1016/j.gpb.2021.10.002
|
[77] |
Zhang W, Liu Y, Min Z, et al. circMine: a comprehensive database to integrate, analyze and visualize human disease-related circRNA transcriptome[J]. Nucleic Acids Res, 2022, 50(D1): D83–D92. doi: 10.1093/nar/gkab809
|
[78] |
Ghosal S, Das S, Sen R, et al. Circ2Traits: a comprehensive database for circular RNA potentially associated with disease and traits[J]. Front Genet, 2013, 4: 283. doi: 10.3389/fgene.2013.00283
|
[79] |
Lai H, Li Y, Zhang H, et al. exoRBase 2.0: an atlas of mRNA, lncRNA and circRNA in extracellular vesicles from human biofluids[J]. Nucleic Acids Res, 2022, 50(D1): D118–D128. doi: 10.1093/nar/gkab1085
|
[80] |
Zhang P, Meng X, Chen H, et al. PlantCircNet: a database for plant circRNA-miRNA-mRNA regulatory networks[J]. Database, 2017, 2017: bax089. doi: 10.1093/database/bax089
|
[81] |
Wang S, Zhang K, Tan S, et al. Circular RNAs in body fluids as cancer biomarkers: the new frontier of liquid biopsies[J]. Mol Cancer, 2021, 20(1): 13. doi: 10.1186/s12943-020-01298-z
|
[82] |
Li D, Li Z, Yang Y, et al. Circular RNAs as biomarkers and therapeutic targets in environmental chemical exposure-related diseases[J]. Environ Res, 2020, 180: 108825. doi: 10.1016/j.envres.2019.108825
|
[83] |
Misir S, Wu N, Yang BB. Specific expression and functions of circular RNAs[J]. Cell Death Differ, 2022, 29(3): 481–491. doi: 10.1038/s41418-022-00948-7
|
[84] |
Wang Y, Liu J, Ma J, et al. Exosomal circRNAs: biogenesis, effect and application in human diseases[J]. Mol Cancer, 2019, 18(1): 116. doi: 10.1186/s12943-019-1041-z
|
[85] |
Li J, Zhang G, Liu CG, et al. The potential role of exosomal circRNAs in the tumor microenvironment: insights into cancer diagnosis and therapy[J]. Theranostics, 2022, 12(1): 87–104. doi: 10.7150/thno.64096
|
[86] |
Zhou H, He X, He Y, et al. Exosomal circRNAs: emerging players in tumor metastasis[J]. Front Cell Dev Biol, 2021, 9: 786224. doi: 10.3389/fcell.2021.786224
|
[87] |
Yang Q, Li F, He AT, et al. Circular RNAs: expression, localization, and therapeutic potentials[J]. Mol Ther, 2021, 29(5): 1683–1702. doi: 10.1016/j.ymthe.2021.01.018
|
[88] |
Fan Z, Xiao T, Luo H, et al. A study on the roles of long non-coding RNA and circular RNA in the pulmonary injuries induced by polystyrene microplastics[J]. Environ Int, 2022, 163: 107223. doi: 10.1016/j.envint.2022.107223
|
[89] |
Fang S, Guo H, Cheng Y, et al. circHECTD1 promotes the silica-induced pulmonary endothelial-mesenchymal transition via HECTD1[J]. Cell Death Dis, 2018, 9(3): 396. doi: 10.1038/s41419-018-0432-1
|
[90] |
Yang X, Wang J, Zhou Z, et al. Silica-induced initiation of circular ZC3H4 RNA/ZC3H4 pathway promotes the pulmonary macrophage activation[J]. FASEB J, 2018, 32(6): 3264–3277. doi: 10.1096/fj.201701118R
|
[91] |
Cheng Z, Zhang Y, Wu S, et al. Peripheral blood circular RNA hsa_circ_0058493 as a potential novel biomarker for silicosis and idiopathic pulmonary fibrosis[J]. Ecotoxicol Environ Saf, 2022, 236: 113451. doi: 10.1016/j.ecoenv.2022.113451
|
[92] |
Roy S, Kanda M, Nomura S, et al. Diagnostic efficacy of circular RNAs as noninvasive, liquid biopsy biomarkers for early detection of gastric cancer[J]. Mol Cancer, 2022, 21(1): 42. doi: 10.1186/s12943-022-01527-7
|
[93] |
Zheng R, Zhang K, Tan S, et al. Exosomal circLPAR1 functions in colorectal cancer diagnosis and tumorigenesis through suppressing BRD4 via METTL3-eIF3h interaction[J]. Mol Cancer, 2022, 21(1): 49. doi: 10.1186/s12943-021-01471-y
|
[94] |
Li J, Li Z, Jiang P, et al. Circular RNA IARS (circ-IARS) secreted by pancreatic cancer cells and located within exosomes regulates endothelial monolayer permeability to promote tumor metastasis[J]. J Exp Clin Cancer Res, 2018, 37(1): 177. doi: 10.1186/s13046-018-0822-3
|
[95] |
Li J, Hu ZQ, Yu SY, et al. CircRPN2 Inhibits Aerobic Glycolysis and Metastasis in Hepatocellular Carcinoma[J]. Cancer Res, 2022, 82(6): 1055–1069. doi: 10.1158/0008-5472.CAN-21-1259
|
[96] |
Liang G, Ling Y, Mehrpour M, et al. Autophagy-associated circRNA circCDYL augments autophagy and promotes breast cancer progression[J]. Mol Cancer, 2020, 19(1): 65. doi: 10.1186/s12943-020-01152-2
|
[97] |
He AT, Liu J, Li F, et al. Targeting circular RNAs as a therapeutic approach: current strategies and challenges[J]. Signal Transduct Target Ther, 2021, 6(1): 185. doi: 10.1038/s41392-021-00569-5
|
[98] |
Lavenniah A, Luu TDA, Li YP, et al. Engineered circular RNA sponges act as miRNA inhibitors to attenuate pressure overload-induced cardiac hypertrophy[J]. Mol Ther, 2020, 28(6): 1506–1517. doi: 10.1016/j.ymthe.2020.04.006
|
[99] |
Du A, Li S, Zhou Y, et al. M6A-mediated upregulation of circMDK promotes tumorigenesis and acts as a nanotherapeutic target in hepatocellular carcinoma[J]. Mol Cancer, 2022, 21(1): 109. doi: 10.1186/s12943-022-01575-z
|
[100] |
Zhao Q, Liu J, Deng H, et al. Targeting Mitochondria-Located circRNA SCAR Alleviates NASH via Reducing mROS Output[J]. Cell, 2020, 183(1): 76–93.e22. doi: 10.1016/j.cell.2020.08.009
|
[101] |
Yang L, Han B, Zhang Z, et al. Extracellular vesicle-mediated delivery of circular RNA SCMH1 promotes functional recovery in rodent and nonhuman primate ischemic stroke models[J]. Circulation, 2020, 142(6): 556–574. doi: 10.1161/CIRCULATIONAHA.120.045765
|
[102] |
Zhang D, Ni N, Wang Y, et al. CircRNA-vgll3 promotes osteogenic differentiation of adipose-derived mesenchymal stem cells via modulating miRNA-dependent integrin α5 expression[J]. Cell Death Differ, 2021, 28(1): 283–302. doi: 10.1038/s41418-020-0600-6
|
[103] |
Hu K, Liu X, Li Y, et al. Exosomes mediated transfer of circ_UBE2D2 enhances the resistance of breast cancer to tamoxifen by binding to MiR-200a-3p[J]. Med Sci Monit, 2020, 26: e922253. doi: 10.12659/MSM.922253
|
[104] |
Qu L, Yi Z, Shen Y, et al. Circular RNA vaccines against SARS-CoV-2 and emerging variants[J]. Cell, 2022, 185(10): 1728–1744.e16. doi: 10.1016/j.cell.2022.03.044
|
[105] |
Gu J, Su C, Huang F, et al. Past, present and future: the relationship between circular RNA and immunity[J]. Front Immunol, 2022, 13: 894707. doi: 10.3389/fimmu.2022.894707
|
[1] | Fei Qin, Hao Yu, Changrong Xu, Huihui Chen, Jianling Bai. Safety of axitinib and sorafenib monotherapy for patients with renal cell carcinoma: a meta-analysis[J]. The Journal of Biomedical Research, 2018, 32(1): 30-38. DOI: 10.7555/JBR.32.20170080 |
[2] | Qian Liu, Cheng Xu, Guixiang Ji, Hui Liu, Wentao Shao, Chunlan Zhang, Aihua Gu, Peng Zhao. Effect of exposure to ambient PM2.5 pollution on the risk of respiratory tract diseases: a meta-analysis of cohort studies[J]. The Journal of Biomedical Research, 2017, 31(2): 130-142. DOI: 10.7555/JBR.31.20160071 |
[3] | Wei Qian, Kuanfeng Xu, Wenting Jia, Ling Lan, Xuqin Zheng, Xueyang Yang, Dai Cui. Association between TSHR gene polymorphism and the risk of Graves' disease: a meta-analysis[J]. The Journal of Biomedical Research, 2016, 30(6): 466-475. DOI: 10.7555/JBR.30.20140144 |
[4] | Jinshan Tang, Ziqiang Zhu, Tao Sui, Dechao Kong, Xiaojian Cao. Position and complications of pedicle screw insertion with or without image-navigation techniques in the thoracolumbar spine: a meta-analysis of comparative studies[J]. The Journal of Biomedical Research, 2014, 28(3): 228-239. DOI: 10.7555/JBR.28.20130159 |
[5] | Wenze Sun, Liping Song, Ting Ai, Yingbing Zhang, Ying Gao, Jie Cui. Prognostic value of MET, cyclin D1 and MET gene copy number in non-small cell lung cancer[J]. The Journal of Biomedical Research, 2013, 27(3): 220-230. DOI: 10.7555/JBR.27.20130004 |
[6] | Zhiqiang Yin, Jiali Xu, Dan Luo. Efficacy and tolerance of tacrolimus and pimecrolimus for atopic dermatitis: a meta-analysis[J]. The Journal of Biomedical Research, 2011, 25(6): 385-391. DOI: 10.1016/S1674-8301(11)60051-1 |
[7] | Liang Zong, Ping Chen, Yinbing Chen, Guohao Shi. Pouch Roux-en-Y vs No Pouch Roux-en-Y following total gastrectomy: a meta-analysis based on 12 studies[J]. The Journal of Biomedical Research, 2011, 25(2): 90-99. DOI: 10.1016/S1674-8301(11)60011-0 |
[8] | Lifeng Zhang, Ning Shao, Qianqian Yu, Lixin Hua, Yuanyuan Mi, Ninghan Feng. Association between p53 Pro72Arg polymorphism and prostate cancer risk: a meta-analysis[J]. The Journal of Biomedical Research, 2011, 25(1): 25-32. DOI: 10.1016/S1674-8301(11)60003-1 |
[9] | Yuanyuan Mi, Qianqian Yu, Zhichao Min, Bin Xu, Lifeng Zhang, Wei Zhang, Ninghan Feng, Lixin Hua. Arg462Gln and Asp541Glu polymorphisms in ribonuclease L and prostate cancer risk: a meta-analysis[J]. The Journal of Biomedical Research, 2010, 24(5): 365-373. DOI: 10.1016/S1674-8301(10)60049-8 |
[10] | Bingbing Wei, Yunyun Zhang, Bo Xi, Junkai Chang, Jinming Bai, Jiantang Su. CYP17 T27C polymorphism and prostate cancer risk:a meta-analysis based on 31 studies[J]. The Journal of Biomedical Research, 2010, 24(3): 233-241. |
1. | Hou W, Guan F, Chen W, et al. Breastfeeding, genetic susceptibility, and the risk of asthma and allergic diseases in children and adolescents: a retrospective national population-based cohort study. BMC Public Health, 2024, 24(1): 3056. DOI:10.1186/s12889-024-20501-0 |
2. | Nandi S, Varotariya K, Luhana S, et al. GWAS for identification of genomic regions and candidate genes in vegetable crops. Funct Integr Genomics, 2024, 24(6): 203. DOI:10.1007/s10142-024-01477-x |
3. | Sung HL, Lin WY. Causal effects of cardiovascular health on five epigenetic clocks. Clin Epigenetics, 2024, 16(1): 134. DOI:10.1186/s13148-024-01752-5 |
4. | Kang HY, Choe EK. Clinical Strategies in Gene Screening Counseling for the Healthy General Population. Korean J Fam Med, 2024, 45(2): 61-68. DOI:10.4082/kjfm.23.0254 |
5. | Lee SB, Choi JE, Hong KW, et al. Genetic Variants Linked to Myocardial Infarction in Individuals with Non-Alcoholic Fatty Liver Disease and Their Potential Interaction with Dietary Patterns. Nutrients, 2024, 16(5): 602. DOI:10.3390/nu16050602 |
6. | Zhang S, Jiang Z, Zeng P. Incorporating genetic similarity of auxiliary samples into eGene identification under the transfer learning framework. J Transl Med, 2024, 22(1): 258. DOI:10.1186/s12967-024-05053-6 |
7. | Seo H, Park JH, Hwang JT, et al. Epigenetic Profiling of Type 2 Diabetes Mellitus: An Epigenome-Wide Association Study of DNA Methylation in the Korean Genome and Epidemiology Study. Genes (Basel), 2023, 14(12): 2207. DOI:10.3390/genes14122207 |
8. | Han J, Zhang L, Yan R, et al. CoNet: Efficient Network Regression for Survival Analysis in Transcriptome-Wide Association Studies-With Applications to Studies of Breast Cancer. Genes (Basel), 2023, 14(3): 586. DOI:10.3390/genes14030586 |
9. | Padilla-Martinez F, Szczerbiński Ł, Citko A, et al. Testing the Utility of Polygenic Risk Scores for Type 2 Diabetes and Obesity in Predicting Metabolic Changes in a Prediabetic Population: An Observational Study. Int J Mol Sci, 2022, 23(24): 16081. DOI:10.3390/ijms232416081 |
10. | Muneeb M, Feng S, Henschel A. Transfer learning for genotype-phenotype prediction using deep learning models. BMC Bioinformatics, 2022, 23(1): 511. DOI:10.1186/s12859-022-05036-8 |
11. | Qiao J, Shao Z, Wu Y, et al. Detecting associated genes for complex traits shared across East Asian and European populations under the framework of composite null hypothesis testing. J Transl Med, 2022, 20(1): 424. DOI:10.1186/s12967-022-03637-8 |
12. | Shao Z, Wang T, Qiao J, et al. A comprehensive comparison of multilocus association methods with summary statistics in genome-wide association studies. BMC Bioinformatics, 2022, 23(1): 359. DOI:10.1186/s12859-022-04897-3 |
13. | Roh H. A genome-wide association study of the occurrence of genetic variations in Edwardsiella piscicida, Vibrio harveyi, and Streptococcus parauberis under stressed environments. J Fish Dis, 2022, 45(9): 1373-1388. DOI:10.1111/jfd.13668 |
14. | Zhang M, Qiao J, Zhang S, et al. Exploring the association between birthweight and breast cancer using summary statistics from a perspective of genetic correlation, mediation, and causality. J Transl Med, 2022, 20(1): 227. DOI:10.1186/s12967-022-03435-2 |
15. | Yamamoto A, Shibuya T. More practical differentially private publication of key statistics in GWAS. Bioinform Adv, 2021, 1(1): vbab004. DOI:10.1093/bioadv/vbab004 |
16. | Mkize N, Maiwashe A, Dzama K, et al. Suitability of GWAS as a Tool to Discover SNPs Associated with Tick Resistance in Cattle: A Review. Pathogens, 2021, 10(12): 1604. DOI:10.3390/pathogens10121604 |
17. | Lu H, Qiao J, Shao Z, et al. A comprehensive gene-centric pleiotropic association analysis for 14 psychiatric disorders with GWAS summary statistics. BMC Med, 2021, 19(1): 314. DOI:10.1186/s12916-021-02186-z |
18. | Monnot S, Desaint H, Mary-Huard T, et al. Deciphering the Genetic Architecture of Plant Virus Resistance by GWAS, State of the Art and Potential Advances. Cells, 2021, 10(11): 3080. DOI:10.3390/cells10113080 |
19. | Lu H, Wei Y, Jiang Z, et al. Integrative eQTL-weighted hierarchical Cox models for SNP-set based time-to-event association studies. J Transl Med, 2021, 19(1): 418. DOI:10.1186/s12967-021-03090-z |
20. | Gao Y, Zhang J, Zhao H, et al. Instrumental Heterogeneity in Sex-Specific Two-Sample Mendelian Randomization: Empirical Results From the Relationship Between Anthropometric Traits and Breast/Prostate Cancer. Front Genet, 2021, 12: 651332. DOI:10.3389/fgene.2021.651332 |
21. | Petersen KS, Kris-Etherton PM, McCabe GP, et al. Perspective: Planning and Conducting Statistical Analyses for Human Nutrition Randomized Controlled Trials: Ensuring Data Quality and Integrity. Adv Nutr, 2021, 12(5): 1610-1624. DOI:10.1093/advances/nmab045 |
22. | Muneeb M, Henschel A. Eye-color and Type-2 diabetes phenotype prediction from genotype data using deep learning methods. BMC Bioinformatics, 2021, 22(1): 198. DOI:10.1186/s12859-021-04077-9 |
23. | O'Rielly DD, Rahman P. Genetic Epidemiology of Complex Phenotypes. Methods Mol Biol, 2021, 2249: 335-367. DOI:10.1007/978-1-0716-1138-8_19 |
24. | Scossa F, Fernie AR. Ancestral sequence reconstruction - An underused approach to understand the evolution of gene function in plants?. Comput Struct Biotechnol J, 2021, 19: 1579-1594. DOI:10.1016/j.csbj.2021.03.008 |
25. | Lu H, Zhang J, Jiang Z, et al. Detection of Genetic Overlap Between Rheumatoid Arthritis and Systemic Lupus Erythematosus Using GWAS Summary Statistics. Front Genet, 2021, 12: 656545. DOI:10.3389/fgene.2021.656545 |
26. | McGuire D, Jiang Y, Liu M, et al. Model-based assessment of replicability for genome-wide association meta-analysis. Nat Commun, 2021, 12(1): 1964. DOI:10.1038/s41467-021-21226-z |
27. | Dennis JK, Sealock JM, Straub P, et al. Clinical laboratory test-wide association scan of polygenic scores identifies biomarkers of complex disease. Genome Med, 2021, 13(1): 6. DOI:10.1186/s13073-020-00820-8 |
28. | Ramanan VK, Wang X, Przybelski SA, et al. Variants in PPP2R2B and IGF2BP3 are associated with higher tau deposition. Brain Commun, 2020, 2(2): fcaa159. DOI:10.1093/braincomms/fcaa159 |
29. | Chen H, Wang T, Yang J, et al. Improved Detection of Potentially Pleiotropic Genes in Coronary Artery Disease and Chronic Kidney Disease Using GWAS Summary Statistics. Front Genet, 2020, 11: 592461. DOI:10.3389/fgene.2020.592461 |
30. | Xiao L, Yuan Z, Jin S, et al. Multiple-Tissue Integrative Transcriptome-Wide Association Studies Discovered New Genes Associated With Amyotrophic Lateral Sclerosis. Front Genet, 2020, 11: 587243. DOI:10.3389/fgene.2020.587243 |
31. | Jin T, Youn J, Kim AN, et al. Interactions of Habitual Coffee Consumption by Genetic Polymorphisms with the Risk of Prediabetes and Type 2 Diabetes Combined. Nutrients, 2020, 12(8): 2228. DOI:10.3390/nu12082228 |
32. | Kuo TT, Jiang X, Tang H, et al. iDASH secure genome analysis competition 2018: blockchain genomic data access logging, homomorphic encryption on GWAS, and DNA segment searching. BMC Med Genomics, 2020, 13(Suppl 7): 98. DOI:10.1186/s12920-020-0715-0 |
33. | Padilla-Martínez F, Collin F, Kwasniewski M, et al. Systematic Review of Polygenic Risk Scores for Type 1 and Type 2 Diabetes. Int J Mol Sci, 2020, 21(5): 1703. DOI:10.3390/ijms21051703 |
34. | Lan T, Yang B, Zhang X, et al. Statistical Methods and Software for Substance Use and Dependence Genetic Research. Curr Genomics, 2019, 20(3): 172-183. DOI:10.2174/1389202920666190617094930 |
35. | Gaudillo J, Rodriguez JJR, Nazareno A, et al. Machine learning approach to single nucleotide polymorphism-based asthma prediction. PLoS One, 2019, 14(12): e0225574. DOI:10.1371/journal.pone.0225574 |
36. | Romagnoni A, Jégou S, Van Steen K, et al. Comparative performances of machine learning methods for classifying Crohn Disease patients using genome-wide genotyping data. Sci Rep, 2019, 9(1): 10351. DOI:10.1038/s41598-019-46649-z |
37. | Himmerich H, Bentley J, Kan C, et al. Genetic risk factors for eating disorders: an update and insights into pathophysiology. Ther Adv Psychopharmacol, 2019, 9: 2045125318814734. DOI:10.1177/2045125318814734 |
38. | Sanyal N, Lo MT, Kauppi K, et al. GWASinlps: non-local prior based iterative SNP selection tool for genome-wide association studies. Bioinformatics, 2019, 35(1): 1-11. DOI:10.1093/bioinformatics/bty472 |
39. | Brinster R, Köttgen A, Tayo BO, et al. Control procedures and estimators of the false discovery rate and their application in low-dimensional settings: an empirical investigation. BMC Bioinformatics, 2018, 19(1): 78. DOI:10.1186/s12859-018-2081-x |
40. | Zeng P, Wang T, Huang S. Cis-SNPs Set Testing and PrediXcan Analysis for Gene Expression Data using Linear Mixed Models. Sci Rep, 2017, 7(1): 15237. DOI:10.1038/s41598-017-15055-8 |
41. | Zeng P, Zhou X, Huang S. Prediction of gene expression with cis-SNPs using mixed models and regularization methods. BMC Genomics, 2017, 18(1): 368. DOI:10.1186/s12864-017-3759-6 |
42. | Läll K, Mägi R, Morris A, et al. Personalized risk prediction for type 2 diabetes: the potential of genetic risk scores. Genet Med, 2017, 19(3): 322-329. DOI:10.1038/gim.2016.103 |
43. | Umehara H, Numata S, Tajima A, et al. Calcium Signaling Pathway Is Associated with the Long-Term Clinical Response to Selective Serotonin Reuptake Inhibitors (SSRI) and SSRI with Antipsychotics in Patients with Obsessive-Compulsive Disorder. PLoS One, 2016, 11(6): e0157232. DOI:10.1371/journal.pone.0157232 |
44. | Zhang Q, Zhao Y, Zhang R, et al. A Comparative Study of Five Association Tests Based on CpG Set for Epigenome-Wide Association Studies. PLoS One, 2016, 11(6): e0156895. DOI:10.1371/journal.pone.0156895 |
45. | Gasc C, Peyretaillade E, Peyret P. Sequence capture by hybridization to explore modern and ancient genomic diversity in model and nonmodel organisms. Nucleic Acids Res, 2016, 44(10): 4504-18. DOI:10.1093/nar/gkw309 |