Citation: | Sun Zhen, Liu Chen, Cheng Steven Y.. Identification of four novel prognosis biomarkers and potential therapeutic drugs for human colorectal cancer by bioinformatics analysis[J]. The Journal of Biomedical Research, 2021, 35(1): 21-35. DOI: 10.7555/JBR.34.20200021 |
[1] |
Dekker E, Tanis PJ, Vleugels JLA, et al. Colorectal cancer[J]. Lancet,2019, 394(10207): 1467–1480. doi: 10.1016/S0140-6736(19)32319-0
|
[2] |
Brenner H, Kloor M, Pox CP. Colorectal cancer[J]. Lancet,2014, 383(9927): 1490–1502. doi: 10.1016/S0140-6736(13)61649-9
|
[3] |
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015[J]. CA Cancer J Clin,2015, 65(1): 5–29. doi: 10.3322/caac.21254
|
[4] |
Kulasingam V, Diamandis EP. Strategies for discovering novel cancer biomarkers through utilization of emerging technologies[J]. Nat Clin Pract Oncol,2008, 5(10): 588–599. doi: 10.1038/ncponc1187
|
[5] |
Nannini M, Pantaleo MA, Maleddu A, et al. Gene expression profiling in colorectal cancer using microarray technologies: results and perspectives[J]. Cancer Treat Rev,2009, 35(3): 201–209. doi: 10.1016/j.ctrv.2008.10.006
|
[6] |
Bustin SA, Dorudi S. Gene expression profiling for molecular staging and prognosis prediction in colorectal cancer[J]. Expert Rev Mol Diagn,2004, 4(5): 599–607. doi: 10.1586/14737159.4.5.599
|
[7] |
Zhao B, Baloch Z, Ma YH, et al. Identification of potential key genes and pathways in early-onset colorectal cancer through bioinformatics analysis[J]. Cancer Control,2019, 26(1): 1073274819831260. doi: 10.1177/1073274819831260.[Epubaheadofprint]
|
[8] |
Chen LB, Lu DW, Sun KK, et al. Identification of biomarkers associated with diagnosis and prognosis of colorectal cancer patients based on integrated bioinformatics analysis[J]. Gene,2019, 692: 119–125. doi: 10.1016/j.gene.2019.01.001
|
[9] |
Chen J, Wang ZH, Shen XJ, et al. Identification of novel biomarkers and small molecule drugs in human colorectal cancer by microarray and bioinformatics analysis[J]. Mol Genet Genomic Med,2019, 7(7): e00713. doi: 10.1002/mgg3.713
|
[10] |
Yu C, Chen FQ, Jiang JJ, et al. Screening key genes and signaling pathways in colorectal cancer by integrated bioinformatics analysis[J]. Mol Med Rep,2019, 20(2): 1259–1269. doi: 10.3892/mmr.2019.10336
|
[11] |
Bian QL, Chen JX, Qiu WQ, et al. Four targeted genes for predicting the prognosis of colorectal cancer: a bioinformatics analysis case[J]. Oncol Lett,2019, 18(5): 5043–5054. doi: 10.3892/ol.2019.10866
|
[12] |
Sun GW, Li YL, Peng YJ, et al. Identification of differentially expressed genes and biological characteristics of colorectal cancer by integrated bioinformatics analysis[J]. J Cell Physiol,2019, 234(9): 15215–15224. doi: 10.1002/jcp.28163
|
[13] |
Yeh MH, Tzeng YJ, Fu TY, et al. Extracellular matrix-receptor interaction signaling genes associated with inferior breast cancer survival[J]. Anticancer Res,2018, 38(8): 4593–4605. doi: 10.21873/anticanres.12764
|
[14] |
Yang D, Ma Y, Zhao PC, et al. Systematic screening of protein-coding gene expression identified HMMR as a potential independent indicator of unfavorable survival in patients with papillary muscle-invasive bladder cancer[J].Biomed Pharmacother,2019, 120: 109433. doi: 10.1016/j.biopha.2019.109433
|
[15] |
Rizzardi AE, Rosener NK, Koopmeiners JS, et al. Evaluation of protein biomarkers of prostate cancer aggressiveness[J]. BMC Cancer,2014, 14: 244. doi: 10.1186/1471-2407-14-244
|
[16] |
Wang YP, Chen L, Ju LG, et al. Novel biomarkers associated with progression and prognosis of bladder cancer identified by co-expression analysis[J]. Front Oncol,2019, 9: 1030. doi: 10.3389/fonc.2019.01030
|
[17] |
Song YJ, Tan J, Gao XH, et al. Integrated analysis reveals key genes with prognostic value in lung adenocarcinoma[J]. Cancer Manag Res,2018, 10: 6097–6108. doi: 10.2147/CMAR.S168636
|
[18] |
Zhang L, Zhang Z, Yu ZL. Identification of a novel glycolysis-related gene signature for predicting metastasis and survival in patients with lung adenocarcinoma[J]. J Transl Med,2019, 17(1): 423. doi: 10.1186/s12967-019-02173-2
|
[19] |
Liu C, Li YY, Wei MJ, et al. Identification of a novel glycolysis-related gene signature that can predict the survival of patients with lung adenocarcinoma[J]. Cell Cycle,2019, 18(5): 568–579. doi: 10.1080/15384101.2019.1578146
|
[20] |
Zhou ZY, Li YZ, Hao HY, et al. Screening hub genes as prognostic biomarkers of hepatocellular carcinoma by bioinformatics analysis[J]. Cell Transplant,2019, 28(1S): 76S–86S. doi: 10.1177/0963689719893950
|
[21] |
Ni WK, Zhang SQ, Jiang B, et al. Identification of cancer-related gene network in hepatocellular carcinoma by combined bioinformatic approach and experimental validation[J]. Pathol Res Pract,2019, 215(6): 152428. doi: 10.1016/j.prp.2019.04.020
|
[22] |
Shen S, Kong JJ, Qiu YW, et al. Identification of core genes and outcomes in hepatocellular carcinoma by bioinformatics analysis[J]. J Cell Biochem,2019, 120(6): 10069–10081. doi: 10.1002/jcb.28290
|
[23] |
Zhang HZ, Ren LL, Ding Y, et al. Hyaluronan-mediated motility receptor confers resistance to chemotherapy via TGFβ/Smad-2-induced epithelial-mesenchymal transition in gastric cancer[J]. FASEB J,2019, 33(5): 6365–6377. doi: 10.1096/fj.201802186R
|
[24] |
Tilghman J, Wu H, Sang YY, et al. HMMR maintains the stemness and tumorigenicity of glioblastoma stem-like Cells[J]. Cancer Res,2014, 74(11): 3168–3179. doi: 10.1158/0008-5472.CAN-13-2103
|
[25] |
Ye S, Liu Y, Fuller AM, et al. TGFβ and Hippo pathways cooperate to enhance sarcomagenesis and metastasis through the hyaluronan-mediated motility receptor (HMMR)[J]. Mol Cancer Res,2020, 18(4): 560–573. doi: 10.1158/1541-7786.MCR-19-0877
|
[26] |
Chakravarthi BVSK, Del Carmen Rodriguez Pena M, Agarwal S, et al. A role for de novo purine metabolic enzyme PAICS in bladder cancer progression[J]. Neoplasia,2018, 20(9): 894–904. doi: 10.1016/j.neo.2018.07.006
|
[27] |
Meng MJ, Chen YL, Jia JB, et al. Knockdown of PAICS inhibits malignant proliferation of human breast cancer cell lines[J]. Biol Res,2018, 51(1): 24. doi: 10.1186/s40659-018-0172-9
|
[28] |
Goswami MT, Chen GA, Chakravarthi BVSK, et al. Role and regulation of coordinately expressed de novo purine biosynthetic enzymes PPAT and PAICS in lung cancer[J]. Oncotarget,2015, 6(27): 23445–23461. doi: 10.18632/oncotarget.4352
|
[29] |
Zhou SY, Yan YL, Chen X, et al. Roles of highly expressed PAICS in lung adenocarcinoma[J]. Gene,2019, 692: 1–8. doi: 10.1016/j.gene.2018.12.064
|
[30] |
Chakravarthi BVSK, Goswami MT, Pathi SS, et al. Expression and role of PAICS, a de novo purine biosynthetic gene in prostate cancer[J]. Prostate,2017, 77(1): 10–21. doi: 10.1002/pros.23243
|
[31] |
Duxbury MS, Ashley SW, Whang EE. Inhibition of pancreatic adenocarcinoma cellular invasiveness by blebbistatin: a novel myosin II inhibitor[J]. Biochem Biophys Res Commun,2004, 313(4): 992–997. doi: 10.1016/j.bbrc.2003.12.031
|
[32] |
Wu YX, Zhang XS, Shen R, et al. Expression and significance of ETFDH in hepatocellular carcinoma[J]. Pathol Res Pract,2019, 215(12): 152702. doi: 10.1016/j.prp.2019.152702
|
[33] |
Betapudi V, Licate LS, Egelhoff TT. Distinct roles of nonmuscle myosin II isoforms in the regulation of MDA-MB-231 breast cancer cell spreading and migration[J]. Cancer Res,2006, 66(9): 4725–4733. doi: 10.1158/0008-5472.CAN-05-4236
|
[34] |
Doller A, Badawi A, Schmid T, et al. The cytoskeletal inhibitors latrunculin A and blebbistatin exert antitumorigenic properties in human hepatocellular carcinoma cells by interfering with intracellular HuR trafficking[J]. Exp Cell Res,2015, 330(1): 66–80. doi: 10.1016/j.yexcr.2014.09.010
|
[35] |
Choi HS, Kim JH, Kim SL, et al. Disruption of the NF-κB/IL-8 signaling axis by sulconazole inhibits human breast cancer stem cell formation[J]. Cells,2019, 8(9): 1007. doi: 10.3390/cells8091007
|
[1] | I. M. Elzein, Ashraf. Chamseddine, Ahmad. Eltanboly, Adam Elzein. Cervical cancer perceived risk factors behavior using logistic regression technique[J]. The Journal of Biomedical Research. DOI: 10.7555/JBR.39.20250047 |
[2] | Ting Liu, Jingjing Gu, Chuning Li, Mengfan Guo, Lin Yuan, Qiang Lv, Chao Qin, Mulong Du, Haiyan Chu, Hanting Liu, Zhengdong Zhang. Alternative polyadenylation-related genetic variants contribute to bladder cancer risk[J]. The Journal of Biomedical Research, 2023, 37(6): 405-417. DOI: 10.7555/JBR.37.20230063 |
[3] | Jia Meiqun, Ren Lulu, Hu Lingmin, Ma Hongxia, Jin Guangfu, Li Dake, Li Ni, Hu Zhibin, Hang Dong. Association of long non-coding RNA HOTAIR and MALAT1 variants with cervical cancer risk in Han Chinese women[J]. The Journal of Biomedical Research, 2019, 33(5): 308-316. DOI: 10.7555/JBR.33.20180096 |
[4] | Huanqiang Wang, Congying Yang, Siyuan Wang, Tian Wang, Jingling Han, Kai Wei, Fucun Liu, Jida Xu, Xianzhen Peng, Jianming Wang. Cell-free plasma hypermethylated CASZ1, CDH13 and ING2 are promising biomarkers of esophageal cancer[J]. The Journal of Biomedical Research, 2018, 32(6): 424-433. DOI: 10.7555/JBR.32.20170065 |
[5] | Christopher J. Danford, Zemin Yao, Z. Gordon Jiang. Non-alcoholic fatty liver disease: a narrative review of genetics[J]. The Journal of Biomedical Research, 2018, 32(6): 389-400. DOI: 10.7555/JBR.32.20180045 |
[6] | Anna Karolina Zuk, Xuesong Wen, Stephen Dilworth, Dong Li, Lucy Ghali. Modeling and validating three dimensional human normal cervix and cervical cancer tissues in vitro[J]. The Journal of Biomedical Research, 2017, 31(3): 240-247. DOI: 10.7555/JBR.31.20160150 |
[7] | Il-Seok Lee, Sung Pil Seo, Yun Sok Ha, Pildu Jeong, Ho Won Kang, Won Tae Kim, YongJune Kim, Seok Joong Yun, Sang Cheol Lee, Wun-Jae Kim. Genetic variation of the PSCA gene (rs2294008) is not associated with the risk of prostate cancer[J]. The Journal of Biomedical Research, 2017, 31(3): 226-231. DOI: 10.7555/JBR.31.20160072 |
[8] | Sijun Liu, Yun Qian, Feng Lu, Meihua Dong, Yudi Lin, Huizhang Li, Chong Shen, Juncheng Dai, Yue Jiang, Guangfu Jin, Zhibin Hu, Hongbing Shen. Genetic variants at 10q23.33 are associated with plasma lipid levels in a Chinese population[J]. The Journal of Biomedical Research, 2014, 28(1): 53-58. DOI: 10.7555/JBR.27.20120091 |
[9] | Haiyan Chu, Meilin Wang, Zhengdong Zhang. Bladder cancer epidemiology and genetic susceptibility[J]. The Journal of Biomedical Research, 2013, 27(3): 170-178. DOI: 10.7555/JBR.27.20130026 |
[10] | Guojun Li, Zhigang Huang, Xingming Chen, Qingyi Wei. Role of human papillomavirus and cell cycle-related variants in squamous cell carcinoma of the oropharynx[J]. The Journal of Biomedical Research, 2010, 24(5): 339-346. DOI: 10.1016/S1674-8301(10)60047-4 |