4.6

CiteScore

2.2

Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Xiao Shi, Xinxin Si, Ershao Zhang, Ruochen Zang, Nan Yang, He Cheng, Zhihong Zhang, Beijing Pan, Yujie Sun. Paclitaxel-induced stress granules increase LINE-1 mRNA stability to promote drug resistance in breast cancer cells[J]. The Journal of Biomedical Research, 2021, 35(6): 411-424. DOI: 10.7555/JBR.35.20210105
Citation: Xiao Shi, Xinxin Si, Ershao Zhang, Ruochen Zang, Nan Yang, He Cheng, Zhihong Zhang, Beijing Pan, Yujie Sun. Paclitaxel-induced stress granules increase LINE-1 mRNA stability to promote drug resistance in breast cancer cells[J]. The Journal of Biomedical Research, 2021, 35(6): 411-424. DOI: 10.7555/JBR.35.20210105

Paclitaxel-induced stress granules increase LINE-1 mRNA stability to promote drug resistance in breast cancer cells

More Information
  • Corresponding author:

    Yujie Sun, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University; and Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing Jiangsu 211166, China. Tel: +86-25-86869428, E-mail: yujiesun@njmu.edu.cn

  • Received Date: June 29, 2021
  • Revised Date: August 19, 2021
  • Accepted Date: August 23, 2021
  • Available Online: October 29, 2021
  • Abnormal expression of long interspersed element-1 (LINE-1) has been implicated in drug resistance, while our previous study showed that chemotherapy drug paclitaxel (PTX) increased LINE-1 level with unknown mechanism. Bioinformatics analysis suggested the regulation of LINE-1 mRNA by drug-induced stress granules (SGs). This study aimed to explore whether and how SGs are involved in drug-induced LINE-1 increase and thereby promotes drug resistance of triple negative breast cancer (TNBC) cells. We demonstrated that SGs increased LINE-1 expression by recruiting and stabilizing LINE-1 mRNA under drug stress, thereby adapting TNBC cells to chemotherapy drugs. Moreover, LINE-1 inhibitor efavirenz (EFV) could inhibit drug-induced SG to destabilize LINE-1. Our study provides the first evidence of the regulation of LINE-1 by SGs that could be an important survival mechanism for cancer cells exposed to chemotherapy drugs. The findings provide a useful clue for developing new chemotherapeutic strategies against TNBCs.
  • [1]
    Foulkes WD, Smith IE, Reis-Filho JS. Triple-negative breast cancer[J]. N Engl J Med, 2010, 363(20): 1938–1948. doi: 10.1056/NEJMra1001389
    [2]
    Liedtke C, Mazouni C, Hess KR, et al. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer[J]. J Clin Oncol, 2008, 26(8): 1275–1281. doi: 10.1200/JCO.2007.14.4147
    [3]
    Burns KH. Transposable elements in cancer[J]. Nat Rev Cancer, 2017, 17(7): 415–424. doi: 10.1038/nrc.2017.35
    [4]
    Kazazian HH Jr, Goodier JL. LINE drive: retrotransposition and genome instability[J]. Cell, 2002, 110(3): 277–280. doi: 10.1016/S0092-8674(02)00868-1
    [5]
    Schwertz H, Rowley JW, Schumann GG, et al. Endogenous LINE-1 (long interspersed nuclear element-1) reverse transcriptase activity in platelets controls translational events through RNA-DNA hybrids[J]. Arterioscler Thromb Vasc Biol, 2018, 38(4): 801–815. doi: 10.1161/ATVBAHA.117.310552
    [6]
    Dueva R, Akopyan K, Pederiva C, et al. Neutralization of the positive charges on histone tails by RNA promotes an open chromatin structure[J]. Cell Chem Biol, 2019, 26(10): 1436–1449.e5. doi: 10.1016/j.chembiol.2019.08.002
    [7]
    Cruickshanks HA, Vafadar-Isfahani N, Dunican DS, et al. Expression of a large LINE-1-driven antisense RNA is linked to epigenetic silencing of the metastasis suppressor gene TFPI-2 in cancer[J]. Nucleic Acids Res, 2013, 41(14): 6857–6869. doi: 10.1093/nar/gkt438
    [8]
    Lavasanifar A, Sharp CN, Korte EA, et al. Long interspersed nuclear element-1 mobilization as a target in cancer diagnostics, prognostics and therapeutics[J]. Clin Chim Acta, 2019, 493: 52–62. doi: 10.1016/j.cca.2019.02.015
    [9]
    Yang Q, Feng F, Zhang F, et al. LINE-1 ORF-1p functions as a novel HGF/ETS-1 signaling pathway co-activator and promotes the growth of MDA-MB-231 cell[J]. Cell Signal, 2013, 25(12): 2652–2660. doi: 10.1016/j.cellsig.2013.08.029
    [10]
    Feng F, Lu Y, Zhang F, et al. Long interspersed nuclear element ORF-1 protein promotes proliferation and resistance to chemotherapy in hepatocellular carcinoma[J]. World J Gastroenterol, 2013, 19(7): 1068–1078. doi: 10.3748/wjg.v19.i7.1068
    [11]
    Farkash EA, Kao GD, Horman SR, et al. Gamma radiation increases endonuclease-dependent L1 retrotransposition in a cultured cell assay[J]. Nucleic Acids Res, 2006, 34(4): 1196–1204. doi: 10.1093/nar/gkj522
    [12]
    Okudaira N, Okamura T, Tamura M, et al. Long interspersed element-1 is differentially regulated by food-borne carcinogens via the aryl hydrocarbon receptor[J]. Oncogene, 2013, 32(41): 4903–4912. doi: 10.1038/onc.2012.516
    [13]
    Guler GD, Tindell CA, Pitti R, et al. Repression of stress-induced LINE-1 expression protects cancer cell subpopulations from lethal drug exposure[J]. Cancer Cell, 2017, 32(2): 221–237.e13. doi: 10.1016/j.ccell.2017.07.002
    [14]
    Mahboubi H, Stochaj U. Cytoplasmic stress granules: dynamic modulators of cell signaling and disease[J]. Biochim Biophys Acta Mol Basis Dis, 2017, 1863(4): 884–895. doi: 10.1016/j.bbadis.2016.12.022
    [15]
    Fujimura K, Sasaki AT, Anderson P. Selenite targets eIF4E-binding protein-1 to inhibit translation initiation and induce the assembly of non-canonical stress granules[J]. Nucleic Acids Res, 2012, 40(16): 8099–8110. doi: 10.1093/nar/gks566
    [16]
    Liu W, Huang CY, Lu IC, et al. Inhibition of glioma growth by minocycline is mediated through endoplasmic reticulum stress-induced apoptosis and autophagic cell death[J]. Neuro Oncol, 2013, 15(9): 1127–1141. doi: 10.1093/neuonc/not073
    [17]
    Vilas-Boas FDAS, da Silva AM, de Sousa LP, et al. Impairment of stress granule assembly via inhibition of the eIF2alpha phosphorylation sensitizes glioma cells to chemotherapeutic agents[J]. J Neurooncol, 2016, 127(2): 253–260. doi: 10.1007/s11060-015-2043-3
    [18]
    Arimoto K, Fukuda H, Imajoh-Ohmi S, et al. Formation of stress granules inhibits apoptosis by suppressing stress-responsive MAPK pathways[J]. Nat Cell Biol, 2008, 10(11): 1324–1332. doi: 10.1038/ncb1791
    [19]
    Thedieck K, Holzwarth B, Prentzell MT, et al. Inhibition of mTORC1 by astrin and stress granules prevents apoptosis in cancer cells[J]. Cell, 2013, 154(4): 859–874. doi: 10.1016/j.cell.2013.07.031
    [20]
    Gareau C, Fournier MJ, Filion C, et al. p21WAF1/CIP1 upregulation through the stress granule-associated protein CUGBP1 confers resistance to bortezomib-mediated apoptosis[J]. PLoS One, 2011, 6(5): e20254. doi: 10.1371/journal.pone.0020254
    [21]
    Doucet AJ, Hulme AE, Sahinovic E, et al. Characterization of LINE-1 ribonucleoprotein particles[J]. PLoS Genet, 2010, 6(10): e1001150. doi: 10.1371/journal.pgen.1001150
    [22]
    Khong A, Matheny T, Jain S, et al. The stress granule transcriptome reveals principles of mRNA accumulation in stress granules[J]. Mol Cell, 2017, 68(4): 808–820.e5. doi: 10.1016/j.molcel.2017.10.015
    [23]
    Ying W, Wang S, Shi J, et al. ER-/ER+ breast cancer cell lines exhibited different resistance to paclitaxel through pulse selection[J]. Med Oncol, 2012, 29(2): 495–502. doi: 10.1007/s12032-011-9889-9
    [24]
    Bojang P Jr, Roberts RA, Anderton MJ, et al. Reprogramming of the HepG2 genome by long interspersed nuclear element-1[J]. Mol Oncol, 2013, 7(4): 812–825. doi: 10.1016/j.molonc.2013.04.003
    [25]
    Sciamanna I, Landriscina M, Pittoggi C, et al. Inhibition of endogenous reverse transcriptase antagonizes human tumor growth[J]. Oncogene, 2005, 24(24): 3923–3931. doi: 10.1038/sj.onc.1208562
    [26]
    Györffy B, Lanczky A, Eklund AC, et al. An online survival analysis tool to rapidly assess the effect of 22, 277 genes on breast cancer prognosis using microarray data of 1, 809 patients[J]. Breast Cancer Res Treat, 2010, 123(3): 725–731. doi: 10.1007/s10549-009-0674-9
    [27]
    Agostini F, Zanzoni A, Klus P, et al. catRAPID omics: a web server for large-scale prediction of protein-RNA interactions[J]. Bioinformatics, 2013, 29(22): 2928–2930. doi: 10.1093/bioinformatics/btt495
    [28]
    Muppirala UK, Honavar VG, Dobbs D. Predicting RNA-protein interactions using only sequence information[J]. BMC Bioinformatics, 2011, 12: 489. doi: 10.1186/1471-2105-12-489
    [29]
    Kale SP, Moore L, Deininger PL, et al. Heavy metals stimulate human LINE-1 retrotransposition[J]. Int J Environ Res Public Health, 2005, 2(1): 14–23. doi: 10.3390/ijerph2005010014
    [30]
    Teneng I, Stribinskis V, Ramos KS. Context-specific regulation of LINE-1[J]. Genes Cells, 2007, 12(10): 1101–1110. doi: 10.1111/j.1365-2443.2007.01117.x
    [31]
    Whongsiri P, Pimratana C, Wijitsettakul U, et al. LINE-1 ORF1 protein is Up-regulated by reactive oxygen species and associated with bladder urothelial carcinoma progression[J]. Cancer Genomics Proteomics, 2018, 15(2): 143–151. doi: 10.21873/cgp.20072
    [32]
    Lim J, Ha M, Chang H, et al. Uridylation by TUT4 and TUT7 marks mRNA for degradation[J]. Cell, 2014, 159(6): 1365–1376. doi: 10.1016/j.cell.2014.10.055
    [33]
    Hamdorf M, Idica A, Zisoulis DG, et al. miR-128 represses L1 retrotransposition by binding directly to L1 RNA[J]. Nat Struct Mol Biol, 2015, 22(10): 824–831. doi: 10.1038/nsmb.3090
    [34]
    Fung L, Guzman H, Sevrioukov E, et al. miR-128 restriction of LINE-1 (L1) retrotransposition is dependent on targeting hnRNPA1 mRNA[J]. Int J Mol Sci, 2019, 20(8): 1955. doi: 10.3390/ijms20081955
    [35]
    Kawakami A, Tian Q, Duan X, et al. Identification and functional characterization of a TIA-1-related nucleolysin[J]. Proc Natl Acad Sci USA, 1992, 89(18): 8681–8685. doi: 10.1073/pnas.89.18.8681
    [36]
    Meyer C, Garzia A, Mazzola M, et al. The TIA1 RNA-binding protein family regulates EIF2AK2-mediated stress response and cell cycle progression[J]. Mol Cell, 2018, 69(4): 622–635.e6. doi: 10.1016/j.molcel.2018.01.011
    [37]
    Bley N, Lederer M, Pfalz B, et al. Stress granules are dispensable for mRNA stabilization during cellular stress[J]. Nucleic Acids Res, 2015, 43(4): e26. doi: 10.1093/nar/gku1275
    [38]
    Goodier JL, Zhang L, Vetter MR, et al. LINE-1 ORF1 protein localizes in stress granules with other RNA-binding proteins, including components of RNA interference RNA-induced silencing complex[J]. Mol Cell Biol, 2007, 27(18): 6469–6483. doi: 10.1128/MCB.00332-07
    [39]
    Song MS, Grabocka E. Stress granules in cancer[M]// Pedersen SHF. Reviews of physiology, biochemistry and pharmacology. Berlin Heidelberg: Springer, 2020: 1–28.
    [40]
    Anderson P, Kedersha N, Ivanov P. Stress granules, P-bodies and cancer[J]. Biochim Biophys Acta, 2015, 1849(7): 861–870. doi: 10.1016/j.bbagrm.2014.11.009
    [41]
    Sahakyan AB, Murat P, Mayer C, et al. G-quadruplex structures within the 3′UTR of LINE-1 elements stimulate retrotransposition[J]. Nat Struct Mol Biol, 2017, 24(3): 243–247. doi: 10.1038/nsmb.3367
    [42]
    Gellert M, Lipsett MN, Davies DR. Helix formation by guanylic acid[J]. Proc Natl Acad Sci U S A, 1962, 48(12): 2013–2018. doi: 10.1073/pnas.48.12.2013
    [43]
    Kato M, Han TW, Xie S, et al. Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels[J]. Cell, 2012, 149(4): 753–767. doi: 10.1016/j.cell.2012.04.017
    [44]
    Van Treeck B, Protter DSW, Matheny T, et al. RNA self-assembly contributes to stress granule formation and defining the stress granule transcriptome[J]. Proc Natl Acad Sci U S A, 2018, 115(11): 2734–2739. doi: 10.1073/pnas.1800038115
    [45]
    Ivanov P, O'Day E, Emara MM, et al. G-quadruplex structures contribute to the neuroprotective effects of angiogenin-induced tRNA fragments[J]. Proc Natl Acad Sci U S A, 2014, 111(51): 18201–18206. doi: 10.1073/pnas.1407361111
    [46]
    Dai L, Huang Q, Boeke JD. Effect of reverse transcriptase inhibitors on LINE-1 and Ty1 reverse transcriptase activities and on LINE-1 retrotransposition[J]. BMC Biochem, 2011, 12: 18. doi: 10.1186/1471-2091-12-18
    [47]
    Hecht M, Erber S, Harrer T, et al. Efavirenz has the highest anti-proliferative effect of non-nucleoside reverse transcriptase inhibitors against pancreatic cancer cells[J]. PLoS One, 2015, 10(6): e0130277. doi: 10.1371/journal.pone.0130277
    [48]
    Houédé N, Pulido M, Mourey L, et al. A phase II trial evaluating the efficacy and safety of efavirenz in metastatic castration-resistant prostate cancer[J]. Oncologist, 2014, 19(12): 1227–1228. doi: 10.1634/theoncologist.2014-0345
    [49]
    Buchan JR, Kolaitis RM, Taylor JP, et al. Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function[J]. Cell, 2013, 153(7): 1461–1474. doi: 10.1016/j.cell.2013.05.037
    [50]
    Bellisai C, Sciamanna I, Rovella P, et al. Reverse transcriptase inhibitors promote the remodelling of nuclear architecture and induce autophagy in prostate cancer cells[J]. Cancer Lett, 2020, 478: 133–145. doi: 10.1016/j.canlet.2020.02.029
    [51]
    Purnell PR, Fox HS. Efavirenz induces neuronal autophagy and mitochondrial alterations[J]. J Pharmacol Exp Ther, 2014, 351(2): 250–258. doi: 10.1124/jpet.114.217869
    [52]
    Apostolova N, Gomez-Sucerquia LJ, Gortat A, et al. Compromising mitochondrial function with the antiretroviral drug efavirenz induces cell survival-promoting autophagy[J]. Hepatology, 2011, 54(3): 1009–1019. doi: 10.1002/hep.24459
    [53]
    Guo H, Chitiprolu M, Gagnon D, et al. Autophagy supports genomic stability by degrading retrotransposon RNA[J]. Nat Commun, 2014, 5: 5276. doi: 10.1038/ncomms6276
    [54]
    Gorrini C, Harris IS, Mak TW. Modulation of oxidative stress as an anticancer strategy[J]. Nat Rev Drug Discov, 2013, 12(12): 931–947. doi: 10.1038/nrd4002
    [55]
    Protter DSW, Parker R. Principles and properties of stress granules[J]. Trends Cell Biol, 2016, 26(9): 668–679. doi: 10.1016/j.tcb.2016.05.004
  • Related Articles

    [1]Fei Qin, Hao Yu, Changrong Xu, Huihui Chen, Jianling Bai. Safety of axitinib and sorafenib monotherapy for patients with renal cell carcinoma: a meta-analysis[J]. The Journal of Biomedical Research, 2018, 32(1): 30-38. DOI: 10.7555/JBR.32.20170080
    [2]Qian Liu, Cheng Xu, Guixiang Ji, Hui Liu, Wentao Shao, Chunlan Zhang, Aihua Gu, Peng Zhao. Effect of exposure to ambient PM2.5 pollution on the risk of respiratory tract diseases: a meta-analysis of cohort studies[J]. The Journal of Biomedical Research, 2017, 31(2): 130-142. DOI: 10.7555/JBR.31.20160071
    [3]Wei Qian, Kuanfeng Xu, Wenting Jia, Ling Lan, Xuqin Zheng, Xueyang Yang, Dai Cui. Association between TSHR gene polymorphism and the risk of Graves' disease: a meta-analysis[J]. The Journal of Biomedical Research, 2016, 30(6): 466-475. DOI: 10.7555/JBR.30.20140144
    [4]Jinshan Tang, Ziqiang Zhu, Tao Sui, Dechao Kong, Xiaojian Cao. Position and complications of pedicle screw insertion with or without image-navigation techniques in the thoracolumbar spine: a meta-analysis of comparative studies[J]. The Journal of Biomedical Research, 2014, 28(3): 228-239. DOI: 10.7555/JBR.28.20130159
    [5]Wenze Sun, Liping Song, Ting Ai, Yingbing Zhang, Ying Gao, Jie Cui. Prognostic value of MET, cyclin D1 and MET gene copy number in non-small cell lung cancer[J]. The Journal of Biomedical Research, 2013, 27(3): 220-230. DOI: 10.7555/JBR.27.20130004
    [6]Zhiqiang Yin, Jiali Xu, Dan Luo. Efficacy and tolerance of tacrolimus and pimecrolimus for atopic dermatitis: a meta-analysis[J]. The Journal of Biomedical Research, 2011, 25(6): 385-391. DOI: 10.1016/S1674-8301(11)60051-1
    [7]Liang Zong, Ping Chen, Yinbing Chen, Guohao Shi. Pouch Roux-en-Y vs No Pouch Roux-en-Y following total gastrectomy: a meta-analysis based on 12 studies[J]. The Journal of Biomedical Research, 2011, 25(2): 90-99. DOI: 10.1016/S1674-8301(11)60011-0
    [8]Lifeng Zhang, Ning Shao, Qianqian Yu, Lixin Hua, Yuanyuan Mi, Ninghan Feng. Association between p53 Pro72Arg polymorphism and prostate cancer risk: a meta-analysis[J]. The Journal of Biomedical Research, 2011, 25(1): 25-32. DOI: 10.1016/S1674-8301(11)60003-1
    [9]Yuanyuan Mi, Qianqian Yu, Zhichao Min, Bin Xu, Lifeng Zhang, Wei Zhang, Ninghan Feng, Lixin Hua. Arg462Gln and Asp541Glu polymorphisms in ribonuclease L and prostate cancer risk: a meta-analysis[J]. The Journal of Biomedical Research, 2010, 24(5): 365-373. DOI: 10.1016/S1674-8301(10)60049-8
    [10]Bingbing Wei, Yunyun Zhang, Bo Xi, Junkai Chang, Jinming Bai, Jiantang Su. CYP17 T27C polymorphism and prostate cancer risk:a meta-analysis based on 31 studies[J]. The Journal of Biomedical Research, 2010, 24(3): 233-241.
  • Other Related Supplements

  • Cited by

    Periodical cited type(45)

    1. Hou W, Guan F, Chen W, et al. Breastfeeding, genetic susceptibility, and the risk of asthma and allergic diseases in children and adolescents: a retrospective national population-based cohort study. BMC Public Health, 2024, 24(1): 3056. DOI:10.1186/s12889-024-20501-0
    2. Nandi S, Varotariya K, Luhana S, et al. GWAS for identification of genomic regions and candidate genes in vegetable crops. Funct Integr Genomics, 2024, 24(6): 203. DOI:10.1007/s10142-024-01477-x
    3. Sung HL, Lin WY. Causal effects of cardiovascular health on five epigenetic clocks. Clin Epigenetics, 2024, 16(1): 134. DOI:10.1186/s13148-024-01752-5
    4. Kang HY, Choe EK. Clinical Strategies in Gene Screening Counseling for the Healthy General Population. Korean J Fam Med, 2024, 45(2): 61-68. DOI:10.4082/kjfm.23.0254
    5. Lee SB, Choi JE, Hong KW, et al. Genetic Variants Linked to Myocardial Infarction in Individuals with Non-Alcoholic Fatty Liver Disease and Their Potential Interaction with Dietary Patterns. Nutrients, 2024, 16(5): 602. DOI:10.3390/nu16050602
    6. Zhang S, Jiang Z, Zeng P. Incorporating genetic similarity of auxiliary samples into eGene identification under the transfer learning framework. J Transl Med, 2024, 22(1): 258. DOI:10.1186/s12967-024-05053-6
    7. Seo H, Park JH, Hwang JT, et al. Epigenetic Profiling of Type 2 Diabetes Mellitus: An Epigenome-Wide Association Study of DNA Methylation in the Korean Genome and Epidemiology Study. Genes (Basel), 2023, 14(12): 2207. DOI:10.3390/genes14122207
    8. Han J, Zhang L, Yan R, et al. CoNet: Efficient Network Regression for Survival Analysis in Transcriptome-Wide Association Studies-With Applications to Studies of Breast Cancer. Genes (Basel), 2023, 14(3): 586. DOI:10.3390/genes14030586
    9. Padilla-Martinez F, Szczerbiński Ł, Citko A, et al. Testing the Utility of Polygenic Risk Scores for Type 2 Diabetes and Obesity in Predicting Metabolic Changes in a Prediabetic Population: An Observational Study. Int J Mol Sci, 2022, 23(24): 16081. DOI:10.3390/ijms232416081
    10. Muneeb M, Feng S, Henschel A. Transfer learning for genotype-phenotype prediction using deep learning models. BMC Bioinformatics, 2022, 23(1): 511. DOI:10.1186/s12859-022-05036-8
    11. Qiao J, Shao Z, Wu Y, et al. Detecting associated genes for complex traits shared across East Asian and European populations under the framework of composite null hypothesis testing. J Transl Med, 2022, 20(1): 424. DOI:10.1186/s12967-022-03637-8
    12. Shao Z, Wang T, Qiao J, et al. A comprehensive comparison of multilocus association methods with summary statistics in genome-wide association studies. BMC Bioinformatics, 2022, 23(1): 359. DOI:10.1186/s12859-022-04897-3
    13. Roh H. A genome-wide association study of the occurrence of genetic variations in Edwardsiella piscicida, Vibrio harveyi, and Streptococcus parauberis under stressed environments. J Fish Dis, 2022, 45(9): 1373-1388. DOI:10.1111/jfd.13668
    14. Zhang M, Qiao J, Zhang S, et al. Exploring the association between birthweight and breast cancer using summary statistics from a perspective of genetic correlation, mediation, and causality. J Transl Med, 2022, 20(1): 227. DOI:10.1186/s12967-022-03435-2
    15. Yamamoto A, Shibuya T. More practical differentially private publication of key statistics in GWAS. Bioinform Adv, 2021, 1(1): vbab004. DOI:10.1093/bioadv/vbab004
    16. Mkize N, Maiwashe A, Dzama K, et al. Suitability of GWAS as a Tool to Discover SNPs Associated with Tick Resistance in Cattle: A Review. Pathogens, 2021, 10(12): 1604. DOI:10.3390/pathogens10121604
    17. Lu H, Qiao J, Shao Z, et al. A comprehensive gene-centric pleiotropic association analysis for 14 psychiatric disorders with GWAS summary statistics. BMC Med, 2021, 19(1): 314. DOI:10.1186/s12916-021-02186-z
    18. Monnot S, Desaint H, Mary-Huard T, et al. Deciphering the Genetic Architecture of Plant Virus Resistance by GWAS, State of the Art and Potential Advances. Cells, 2021, 10(11): 3080. DOI:10.3390/cells10113080
    19. Lu H, Wei Y, Jiang Z, et al. Integrative eQTL-weighted hierarchical Cox models for SNP-set based time-to-event association studies. J Transl Med, 2021, 19(1): 418. DOI:10.1186/s12967-021-03090-z
    20. Gao Y, Zhang J, Zhao H, et al. Instrumental Heterogeneity in Sex-Specific Two-Sample Mendelian Randomization: Empirical Results From the Relationship Between Anthropometric Traits and Breast/Prostate Cancer. Front Genet, 2021, 12: 651332. DOI:10.3389/fgene.2021.651332
    21. Petersen KS, Kris-Etherton PM, McCabe GP, et al. Perspective: Planning and Conducting Statistical Analyses for Human Nutrition Randomized Controlled Trials: Ensuring Data Quality and Integrity. Adv Nutr, 2021, 12(5): 1610-1624. DOI:10.1093/advances/nmab045
    22. Muneeb M, Henschel A. Eye-color and Type-2 diabetes phenotype prediction from genotype data using deep learning methods. BMC Bioinformatics, 2021, 22(1): 198. DOI:10.1186/s12859-021-04077-9
    23. O'Rielly DD, Rahman P. Genetic Epidemiology of Complex Phenotypes. Methods Mol Biol, 2021, 2249: 335-367. DOI:10.1007/978-1-0716-1138-8_19
    24. Scossa F, Fernie AR. Ancestral sequence reconstruction - An underused approach to understand the evolution of gene function in plants?. Comput Struct Biotechnol J, 2021, 19: 1579-1594. DOI:10.1016/j.csbj.2021.03.008
    25. Lu H, Zhang J, Jiang Z, et al. Detection of Genetic Overlap Between Rheumatoid Arthritis and Systemic Lupus Erythematosus Using GWAS Summary Statistics. Front Genet, 2021, 12: 656545. DOI:10.3389/fgene.2021.656545
    26. McGuire D, Jiang Y, Liu M, et al. Model-based assessment of replicability for genome-wide association meta-analysis. Nat Commun, 2021, 12(1): 1964. DOI:10.1038/s41467-021-21226-z
    27. Dennis JK, Sealock JM, Straub P, et al. Clinical laboratory test-wide association scan of polygenic scores identifies biomarkers of complex disease. Genome Med, 2021, 13(1): 6. DOI:10.1186/s13073-020-00820-8
    28. Ramanan VK, Wang X, Przybelski SA, et al. Variants in PPP2R2B and IGF2BP3 are associated with higher tau deposition. Brain Commun, 2020, 2(2): fcaa159. DOI:10.1093/braincomms/fcaa159
    29. Chen H, Wang T, Yang J, et al. Improved Detection of Potentially Pleiotropic Genes in Coronary Artery Disease and Chronic Kidney Disease Using GWAS Summary Statistics. Front Genet, 2020, 11: 592461. DOI:10.3389/fgene.2020.592461
    30. Xiao L, Yuan Z, Jin S, et al. Multiple-Tissue Integrative Transcriptome-Wide Association Studies Discovered New Genes Associated With Amyotrophic Lateral Sclerosis. Front Genet, 2020, 11: 587243. DOI:10.3389/fgene.2020.587243
    31. Jin T, Youn J, Kim AN, et al. Interactions of Habitual Coffee Consumption by Genetic Polymorphisms with the Risk of Prediabetes and Type 2 Diabetes Combined. Nutrients, 2020, 12(8): 2228. DOI:10.3390/nu12082228
    32. Kuo TT, Jiang X, Tang H, et al. iDASH secure genome analysis competition 2018: blockchain genomic data access logging, homomorphic encryption on GWAS, and DNA segment searching. BMC Med Genomics, 2020, 13(Suppl 7): 98. DOI:10.1186/s12920-020-0715-0
    33. Padilla-Martínez F, Collin F, Kwasniewski M, et al. Systematic Review of Polygenic Risk Scores for Type 1 and Type 2 Diabetes. Int J Mol Sci, 2020, 21(5): 1703. DOI:10.3390/ijms21051703
    34. Lan T, Yang B, Zhang X, et al. Statistical Methods and Software for Substance Use and Dependence Genetic Research. Curr Genomics, 2019, 20(3): 172-183. DOI:10.2174/1389202920666190617094930
    35. Gaudillo J, Rodriguez JJR, Nazareno A, et al. Machine learning approach to single nucleotide polymorphism-based asthma prediction. PLoS One, 2019, 14(12): e0225574. DOI:10.1371/journal.pone.0225574
    36. Romagnoni A, Jégou S, Van Steen K, et al. Comparative performances of machine learning methods for classifying Crohn Disease patients using genome-wide genotyping data. Sci Rep, 2019, 9(1): 10351. DOI:10.1038/s41598-019-46649-z
    37. Himmerich H, Bentley J, Kan C, et al. Genetic risk factors for eating disorders: an update and insights into pathophysiology. Ther Adv Psychopharmacol, 2019, 9: 2045125318814734. DOI:10.1177/2045125318814734
    38. Sanyal N, Lo MT, Kauppi K, et al. GWASinlps: non-local prior based iterative SNP selection tool for genome-wide association studies. Bioinformatics, 2019, 35(1): 1-11. DOI:10.1093/bioinformatics/bty472
    39. Brinster R, Köttgen A, Tayo BO, et al. Control procedures and estimators of the false discovery rate and their application in low-dimensional settings: an empirical investigation. BMC Bioinformatics, 2018, 19(1): 78. DOI:10.1186/s12859-018-2081-x
    40. Zeng P, Wang T, Huang S. Cis-SNPs Set Testing and PrediXcan Analysis for Gene Expression Data using Linear Mixed Models. Sci Rep, 2017, 7(1): 15237. DOI:10.1038/s41598-017-15055-8
    41. Zeng P, Zhou X, Huang S. Prediction of gene expression with cis-SNPs using mixed models and regularization methods. BMC Genomics, 2017, 18(1): 368. DOI:10.1186/s12864-017-3759-6
    42. Läll K, Mägi R, Morris A, et al. Personalized risk prediction for type 2 diabetes: the potential of genetic risk scores. Genet Med, 2017, 19(3): 322-329. DOI:10.1038/gim.2016.103
    43. Umehara H, Numata S, Tajima A, et al. Calcium Signaling Pathway Is Associated with the Long-Term Clinical Response to Selective Serotonin Reuptake Inhibitors (SSRI) and SSRI with Antipsychotics in Patients with Obsessive-Compulsive Disorder. PLoS One, 2016, 11(6): e0157232. DOI:10.1371/journal.pone.0157232
    44. Zhang Q, Zhao Y, Zhang R, et al. A Comparative Study of Five Association Tests Based on CpG Set for Epigenome-Wide Association Studies. PLoS One, 2016, 11(6): e0156895. DOI:10.1371/journal.pone.0156895
    45. Gasc C, Peyretaillade E, Peyret P. Sequence capture by hybridization to explore modern and ancient genomic diversity in model and nonmodel organisms. Nucleic Acids Res, 2016, 44(10): 4504-18. DOI:10.1093/nar/gkw309

    Other cited types(0)

Catalog

    Article Metrics

    Article views (1690) PDF downloads (237) Cited by(45)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return