4.6

CiteScore

2.2

Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Liu Liping, Liu Lenan, Wang Junsong, Zheng Qi, Jin Bai, Sun Lizhou. Differentiation of gestational diabetes mellitus by nuclear magnetic resonance-based metabolic plasma analysis[J]. The Journal of Biomedical Research, 2021, 35(5): 351-360. DOI: 10.7555/JBR.35.20200191
Citation: Liu Liping, Liu Lenan, Wang Junsong, Zheng Qi, Jin Bai, Sun Lizhou. Differentiation of gestational diabetes mellitus by nuclear magnetic resonance-based metabolic plasma analysis[J]. The Journal of Biomedical Research, 2021, 35(5): 351-360. DOI: 10.7555/JBR.35.20200191

Differentiation of gestational diabetes mellitus by nuclear magnetic resonance-based metabolic plasma analysis

More Information
  • Corresponding author:

    Lizhou Sun and Bai Jin, Department of Obstetrics, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China. Tels: +86-13605171213 and +86-13913850147, E-mails: sunlizhoudoc@163.com and jinbai1018@yeah.net

  • Received Date: November 20, 2020
  • Revised Date: December 15, 2020
  • Accepted Date: December 20, 2020
  • Available Online: January 28, 2021
  • This study aimed to investigate the metabolic profile of gestational diabetes mellitus (GDM) at both antepartum and postpartum periods. Seventy pregnant women were divided into three groups: the normal glucose-tolerant group (NGT, n=35), the abnormal glucose-tolerant groups without insulin therapy (A1GDM, n=24) or with insulin therapy (A2GDM, n=11). Metabolic profiles of the plasma were acquired by proton nuclear magnetic resonance (1H-NMR) spectroscopy and analyzed by multivariate statistical data analysis. The relationship between demographic parameters and the potential metabolite biomarkers was further explored. Group antepartum or postpartum showed similar metabolic trends. Compare with those of the NGT group, the levels of 2-hydroxybutyrate, lysine, acetate, glutamine, succinate, tyrosine, formate, and all three BCAAs (leucine, valine, isoleucine) in the A2GDM group were increased dramatically, and the levels of lysine, acetate, and formate in the A1GDM group were elevated significantly. The dramatically decreased levels of 3-methyl-2-oxovalerate and methanol were observed both in the A1GDM group and A2GDM group. Compare to the A1GDM group, the branched-chain amino acids (BCAAs) of leucine, valine, and isoleucine were increased dramatically in the A2GDM group. The levels of aromatic amino acids (AAAs), tyrosine and phenylalanine, were significantly increased in GDM women, consistent with the severity of GDM. Interference of amino acid metabolism and disturbance in energy metabolism occurred in women with different grades of GDM. Metabolic profiles could reflect the severity of GDM. Plasma BCAA concentrations showing strong positive correlations with weight and pre-delivery BMI. This study provides a new perspective to understand the pathogenesis and etiology of GDM, which may help the clinical management and treatment of GDM.
  • [1]
    Leng JH, Shao P, Zhang CP, et al. Prevalence of gestational diabetes mellitus and its risk factors in Chinese pregnant women: a prospective population-based study in Tianjin, China[J]. PLoS One, 2015, 10(3): e0121029. doi: 10.1371/journal.pone.0121029
    [2]
    Reece EA. The fetal and maternal consequences of gestational diabetes mellitus[J]. J Matern Fetal Neonatal Med, 2010, 23(3): 199–203. doi: 10.3109/14767050903550659
    [3]
    Langer O, Yogev Y, Most O, et al. Gestational diabetes: the consequences of not treating[J]. Am J Obstet Gynecol, 2005, 192(4): 989–997. doi: 10.1016/j.ajog.2004.11.039
    [4]
    Allalou A, Nalla A, Prentice KJ, et al. A predictive metabolic signature for the transition from gestational diabetes mellitus to type 2 diabetes[J]. Diabetes, 2016, 65(9): 2529–2539. doi: 10.2337/db15-1720
    [5]
    Harreiter J, Dovjak G, Kautzky-Willer A, et al. Gestational diabetes mellitus and cardiovascular risk after pregnancy[J]. Womens Health, 2014, 10(1): 91–108. doi: 10.2217/whe.13.69
    [6]
    Fuchs O, Sheiner E, Meirovitz M, et al. The association between a history of gestational diabetes mellitus and future risk for female malignancies[J]. Arch Gynecol Obstet, 2017, 295(3): 731–736. doi: 10.1007/s00404-016-4275-7
    [7]
    Wang LF, Wang HJ, Ao D, et al. Influence of pre-pregnancy obesity on the development of macrosomia and large for gestational age in women with or without gestational diabetes mellitus in Chinese population[J]. J Perinatol, 2015, 35(12): 985–990. doi: 10.1038/jp.2015.119
    [8]
    Xiong X, Saunders LD, Wang FL, et al. Gestational diabetes mellitus: prevalence, risk factors, maternal and infant outcomes[J]. Int J Gynaecol Obstet, 2001, 75(3): 221–228. doi: 10.1016/S0020-7292(01)00496-9
    [9]
    Ferrara A, Weiss NS, Hedderson MM, et al. Pregnancy plasma glucose levels exceeding the American Diabetes Association thresholds, but below the National Diabetes Data Group thresholds for gestational diabetes mellitus, are related to the risk of neonatal macrosomia, hypoglycaemia and hyperbilirubinaemia[J]. Diabetologia, 2007, 50(2): 298–306. doi: 10.1007/s00125-006-0517-8
    [10]
    Scholtens DM, Bain JR, Reisetter AC, et al. Metabolic networks and metabolites underlie associations between maternal glucose during pregnancy and newborn size at birth[J]. Diabetes, 2016, 65(7): 2039–2050. doi: 10.2337/db15-1748
    [11]
    Keun HC, Ebbels TMD, Antti H, et al. Analytical reproducibility in 1H NMR-based metabonomic urinalysis[J]. Chem Res Toxicol, 2002, 15(11): 1380–1386. doi: 10.1021/tx0255774
    [12]
    Liu XL, Zhang LB, You LP, et al. Toxicological responses to acute mercury exposure for three species of Manila clam Ruditapes philippinarum by NMR-based metabolomics[J]. Environ Toxicol Pharmacol, 2011, 31(2): 323–332. doi: 10.1016/j.etap.2010.12.003
    [13]
    Lutz NW. Contributions of metabol(om)ic NMR spectroscopy to the investigation of apoptosis[J]. C R Chim, 2006, 9(3-4): 445–451. doi: 10.1016/j.crci.2005.06.017
    [14]
    Ehrenberg HM, Mercer BM, Catalano PM. The influence of obesity and diabetes on the prevalence of macrosomia[J]. Am J Obstet Gynecol, 2004, 191(3): 964–968. doi: 10.1016/j.ajog.2004.05.052
    [15]
    Chen Q, Francis E, Hu G, et al. Metabolomic profiling of women with gestational diabetes mellitus and their offspring: Review of metabolomics studies[J]. J Diabetes Complications, 2018, 32(5): 512–523. doi: 10.1016/j.jdiacomp.2018.01.007
    [16]
    Catalano PM, McIntyre HD, Cruickshank JK, et al. The hyperglycemia and adverse pregnancy outcome study associations of GDM and obesity with pregnancy outcomes[J]. Diabetes Care, 2012, 35(4): 780–786. doi: 10.2337/dc11-1790
    [17]
    Pinto J, Almeida LM, Martins AS, et al. Prediction of gestational diabetes through NMR metabolomics of maternal blood[J]. J Proteome Res, 2015, 14(6): 2696–2706. doi: 10.1021/acs.jproteome.5b00260
    [18]
    Benhalima K, Robyns K, Van Crombrugge P, et al. Differences in pregnancy outcomes and characteristics between insulin-and diet-treated women with gestational diabetes[J]. BMC Pregnancy Childbirth, 2015, 15: 271. doi: 10.1186/s12884-015-0706-x
    [19]
    Kalra B, Gupta Y, Kalra S. Timing of delivery in gestational diabetes mellitus: need for person-centered, shared decision-making[J]. Diabetes Ther, 2016, 7(2): 169–174. doi: 10.1007/s13300-016-0162-2
    [20]
    Rahimi N, Razi F, Nasli-Esfahani E, et al. Amino acid profiling in the gestational diabetes mellitus[J]. J Diabetes Metab Disord, 2017, 16: 13. doi: 10.1186/s40200-016-0283-1
    [21]
    Park S, Park JY, Lee JH, et al. Plasma levels of lysine, tyrosine, and valine during pregnancy are independent risk factors of insulin resistance and gestational diabetes[J]. Metab Syndr Relat Disord, 2015, 13(2): 64–70. doi: 10.1089/met.2014.0113
    [22]
    Zhao L, Wang M, Li J, et al. Association of circulating branched-chain amino acids with gestational diabetes mellitus: a meta-analysis[J]. Int J Endocrinol Metab, 2019, 17(3): e85413. doi: 10.5812/ijem.85413
    [23]
    Roberts LD, Koulman A, Griffin JL. Towards metabolic biomarkers of insulin resistance and type 2 diabetes: progress from the metabolome[J]. Lancet Diabetes Endocrinol, 2014, 2(1): 65–75. doi: 10.1016/S2213-8587(13)70143-8
    [24]
    Owei I, Umekwe N, Stentz F, et al. Amino acid signature predictive of incident prediabetes: a case-control study nested within the longitudinal pathobiology of prediabetes in a biracial cohort[J]. Metabolism, 2019, 98: 76–83. doi: 10.1016/j.metabol.2019.06.011
    [25]
    Jang C, Oh SF, Wada S, et al. A branched-chain amino acid metabolite drives vascular fatty acid transport and causes insulin resistance[J]. Nat Med, 2016, 22(4): 421–426. doi: 10.1038/nm.4057
    [26]
    Haufe S, Engeli S, Kaminski J, et al. Branched-chain amino acid catabolism rather than amino acids plasma concentrations is associated with diet-induced changes in insulin resistance in overweight to obese individuals[J]. Nutr Metab Cardiovasc Dis, 2017, 27(10): 858–864. doi: 10.1016/j.numecd.2017.07.001
    [27]
    Mathew AV, Jaiswal M, Ang L, et al. Impaired amino acid and TCA metabolism and cardiovascular autonomic neuropathy progression in type 1 diabetes[J]. Diabetes, 2019, 68(10): 2035–2044. doi: 10.2337/db19-0145
    [28]
    Reddy BM, Pranavchand R, Latheef SAA. Overview of genomics and post-genomics research on type 2 diabetes mellitus: future perspectives and a framework for further studies[J]. J Biosci, 2019, 44(1): 21. doi: 10.1007/s12038-018-9818-6
    [29]
    Dudzik D, Zorawski M, Skotnicki M, et al. Metabolic fingerprint of Gestational Diabetes Mellitus[J]. J Proteomics, 2014, 103: 57–71. doi: 10.1016/j.jprot.2014.03.025
    [30]
    Pell VR, Chouchani ET, Frezza C, et al. Succinate metabolism: a new therapeutic target for myocardial reperfusion injury[J]. Cardiovasc Res, 2016, 111(2): 134–141. doi: 10.1093/cvr/cvw100
    [31]
    Fu XW, Wang JS, Liao ST, et al. 1H-NMR-Based metabolomics reveals Refined-Huang-Lian-Jie-Du-Decoction (BBG) as a potential ischemic stroke treatment drug with efficacy and a favorable therapeutic window[J]. Front Pharmacol, 2019, 10: 337. doi: 10.3389/fphar.2019.00337
    [32]
    Bahado-Singh RO, Syngelaki A, Akolekar R, et al. Validation of metabolomic models for prediction of early-onset preeclampsia[J]. Am J Obstet Gynecol, 2015, 213(4): 530.el–530.e10. doi: 10.1016/j.ajog.2015.06.044
    [33]
    Dudzik D, Zorawski M, Skotnicki M, et al. GC-MS based Gestational Diabetes Mellitus longitudinal study: identification of 2-and 3-hydroxybutyrate as potential prognostic biomarkers[J]. J Pharm Biomed Anal, 2017, 144: 90–98. doi: 10.1016/j.jpba.2017.02.056
    [34]
    Omori K, Katakami N, Yamamoto Y, et al. Identification of metabolites associated with onset of CAD in diabetic patients using CE-MS analysis: a pilot study[J]. J Atheroscler Thromb, 2019, 26(3): 233–245. doi: 10.5551/jat.42945
  • Related Articles

    [1]Izzatullo Ziyoyiddin o`g`li Abdullaev, Ulugbek Gapparjanovich Gayibov, Sirojiddin Zoirovich Omonturdiev, Sobirova Fotima Azamjonovna, Sabina Narimanovna Gayibova, Takhir Fatikhovich Aripov. Molecular pathways in cardiovascular disease under hypoxia: Mechanisms, biomarkers, and therapeutic targets[J]. The Journal of Biomedical Research. DOI: 10.7555/JBR.38.20240387
    [2]Tiwari-Heckler Shilpa, Jiang Z. Gordon, Popov Yury, J. Mukamal Kenneth. Daily high-dose aspirin does not lower APRI in the Aspirin-Myocardial Infarction Study[J]. The Journal of Biomedical Research, 2020, 34(2): 139-142. DOI: 10.7555/JBR.33.20190041
    [3]Tao Chun'ai, Gan Yongxin, Su Weidong, Li Zhutian, Tang Xiaolan. Effectiveness of hospital disinfection and experience learnt from 11 years of surveillance[J]. The Journal of Biomedical Research, 2019, 33(6): 408-413. DOI: 10.7555/JBR.33.20180118
    [4]Huan Liu, Shijiang Zhang, Yongfeng Shao, Xiaohu Lu, Weidong Gu, Buqing Ni, Qun Gu, Junjie Du. Biomechanical characterization of a novel ring connector for sutureless aortic anastomosis[J]. The Journal of Biomedical Research, 2018, 32(6): 454-460. DOI: 10.7555/JBR.31.20170011
    [5]Minbo Zang, Qiao Zhou, Yunfei Zhu, Mingxi Liu, Zuomin Zhou. Effects of chemotherapeutic agent bendamustine for nonhodgkin lymphoma on spermatogenesis in mice[J]. The Journal of Biomedical Research, 2018, 32(6): 442-453. DOI: 10.7555/JBR.31.20170023
    [6]Kaibo Lin, Shikun Zhang, Jieli Chen, Ding Yang, Mengyi Zhu, Eugene Yujun Xu. Generation and functional characterization of a conditional Pumilio2 null allele[J]. The Journal of Biomedical Research, 2018, 32(6): 434-441. DOI: 10.7555/JBR.32.20170117
    [7]Huanqiang Wang, Congying Yang, Siyuan Wang, Tian Wang, Jingling Han, Kai Wei, Fucun Liu, Jida Xu, Xianzhen Peng, Jianming Wang. Cell-free plasma hypermethylated CASZ1, CDH13 and ING2 are promising biomarkers of esophageal cancer[J]. The Journal of Biomedical Research, 2018, 32(6): 424-433. DOI: 10.7555/JBR.32.20170065
    [8]Fengzhen Wang, Mingwan Zhang, Dongsheng Zhang, Yuan Huang, Li Chen, Sunmin Jiang, Kun Shi, Rui Li. Preparation, optimization, and characterization of chitosancoated solid lipid nanoparticles for ocular drug delivery[J]. The Journal of Biomedical Research, 2018, 32(6): 411-423. DOI: 10.7555/JBR.32.20160170
    [9]Christopher J. Danford, Zemin Yao, Z. Gordon Jiang. Non-alcoholic fatty liver disease: a narrative review of genetics[J]. The Journal of Biomedical Research, 2018, 32(6): 389-400. DOI: 10.7555/JBR.32.20180045
    [10]Sundeep?S.?Tumber, Hong?Liu. Epidural abscess after multiple lumbar punctures for labour epidural catheter placement[J]. The Journal of Biomedical Research, 2010, 24(4): 332-335. DOI: 10.1016/S1674-8301(10)60046-2
  • Cited by

    Periodical cited type(13)

    1. Gowthaman V, Gopalakrishnamurthy TR, Alagesan A, et al. Molecular epidemiological studies of Leucocytozoon caulleryi in commercial layer flocks in Southern peninsular India reveal the presence of new subclusters. J Parasit Dis, 2024, 48(4): 802-809. DOI:10.1007/s12639-024-01705-y
    2. Elshahawy IS, Mohammed ES, Mawas AS, et al. First microscopic, pathological, epidemiological, and molecular investigation of Leucocytozoon (Apicomplexa: Haemosporida) parasites in Egyptian pigeons. Front Vet Sci, 2024, 11: 1434627. DOI:10.3389/fvets.2024.1434627
    3. Agbemelo-Tsomafo C, Adjei S, Kusi KA, et al. Prevalence of Leucocytozoon infection in domestic birds in Ghana. PLoS One, 2023, 18(11): e0294066. DOI:10.1371/journal.pone.0294066
    4. González-Olvera M, Hernandez-Colina A, Chantrey J, et al. A non-invasive feather-based methodology for the detection of blood parasites (Haemosporida). Sci Rep, 2023, 13(1): 16712. DOI:10.1038/s41598-023-43932-y
    5. Boonchuay K, Thomrongsuwannakij T, Chagas CRF, et al. Prevalence and Diversity of Blood Parasites (Plasmodium, Leucocytozoon and Trypanosoma) in Backyard Chickens (Gallus gallus domesticus) Raised in Southern Thailand. Animals (Basel), 2023, 13(17): 2798. DOI:10.3390/ani13172798
    6. Tembe D, Malatji MP, Mukaratirwa S. Occurrence, Prevalence, and Distribution of Haemoparasites of Poultry in Sub-Saharan Africa: A Scoping Review. Pathogens, 2023, 12(7): 945. DOI:10.3390/pathogens12070945
    7. Valkiūnas G, Iezhova TA. Insights into the Biology of Leucocytozoon Species (Haemosporida, Leucocytozoidae): Why Is There Slow Research Progress on Agents of Leucocytozoonosis?. Microorganisms, 2023, 11(5): 1251. DOI:10.3390/microorganisms11051251
    8. Li Z, Ren XX, Zhao YJ, et al. First report of haemosporidia and associated risk factors in red junglefowl (Gallus gallus) in China. Parasit Vectors, 2022, 15(1): 275. DOI:10.1186/s13071-022-05389-2
    9. El-Azm KIA, Hamed MF, Matter A, et al. Molecular and pathological characterization of natural co-infection of poultry farms with the recently emerged Leucocytozoon caulleryi and chicken anemia virus in Egypt. Trop Anim Health Prod, 2022, 54(2): 91. DOI:10.1007/s11250-022-03097-8
    10. Pohuang T, Jittimanee S, Junnu S. Pathology and molecular characterization of Leucocytozoon caulleryi from backyard chickens in Khon Kaen Province, Thailand. Vet World, 2021, 14(10): 2634-2639. DOI:10.14202/vetworld.2021.2634-2639
    11. Khumpim P, Chawengkirttikul R, Junsiri W, et al. Molecular detection and genetic diversity of Leucocytozoon sabrazesi in chickens in Thailand. Sci Rep, 2021, 11(1): 16686. DOI:10.1038/s41598-021-96241-7
    12. Piratae S, Vaisusuk K, Chatan W. Prevalence and molecular identification of Leucocytozoon spp. in fighting cocks (Gallus gallus) in Thailand. Parasitol Res, 2021, 120(6): 2149-2155. DOI:10.1007/s00436-021-07131-w
    13. Valkiūnas G, Iezhova TA. Exo-erythrocytic development of avian malaria and related haemosporidian parasites. Malar J, 2017, 16(1): 101. DOI:10.1186/s12936-017-1746-7

    Other cited types(0)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return