Citation: | Zhu Chenchen, Jiang Haonan, Deng Wenjie, Zhao Shuo, Li Kaiquan, Wang Yuting, Wei Qinjun, Du Jun. Activation of p38/HSP27 pathway counters melatonin-induced inhibitory effect on proliferation of human gastric cancer cells[J]. The Journal of Biomedical Research, 2019, 33(5): 317-324. DOI: 10.7555/JBR.33.20180066 |
[1] |
Vahid S, Thaper D, Zoubeidi A. Chaperoning the cancer: the proteostatic functions of the heat shock proteins in cancer[J]. Recent Pat Anticancer Drug Discov, 2017, 12(1): 35–47. doi: 10.2174/1574892811666161102125252
|
[2] |
Katsogiannou M, Andrieu C, Rocchi P. Heat shock protein 27 phosphorylation state is associated with cancer progression[J]. Front Genet, 2014, 5: 346.
|
[3] |
Mo XM, Li L, Zhu P, et al. Up-regulation of Hsp27 by ERα/Sp1 facilitates proliferation and confers resistance to apoptosis in human papillary thyroid cancer cells[J]. Mol Cell Endocrinol, 2016, 431: 71–87. doi: 10.1016/j.mce.2016.05.010
|
[4] |
Hayashi N, Peacock JW, Beraldi E, et al. Hsp27 silencing coordinately inhibits proliferation and promotes Fas-induced apoptosis by regulating the PEA-15 molecular switch[J]. Cell Death Differ, 2012, 19(6): 990–1002. doi: 10.1038/cdd.2011.184
|
[5] |
Ge HZ, Du J, Xu JM, et al. SUMOylation of HSP27 by small ubiquitin-like modifier 2/3 promotes proliferation and invasion of hepatocellular carcinoma cells[J]. Cancer Biol Ther, 2017, 18(8): 552–559. doi: 10.1080/15384047.2017.1345382
|
[6] |
Zhao M, Shen F, Yin YX, et al. Increased expression of heat shock protein 27 correlates with peritoneal metastasis in epithelial ovarian cancer[J]. Reprod Sci, 2012, 19(7): 748–753. doi: 10.1177/1933719111432875
|
[7] |
Yu ZJ, Zhi JL, Peng XF, et al. Clinical significance of HSP27 expression in colorectal cancer[J]. Mol Med Rep, 2010, 3(6): 953–958.
|
[8] |
Huang QJ, Ye JX, Huang QL, et al. Heat shock protein 27 is over-expressed in tumor tissues and increased in sera of patients with gastric adenocarcinoma[J]. Clin Chem Lab Med, 2010, 48(2): 263–269.
|
[9] |
Heinrich JC, Donakonda S, Haupt VJ, et al. New HSP27 inhibitors efficiently suppress drug resistance development in cancer cells[J]. Oncotarget, 2016, 7(42): 68156–68169.
|
[10] |
Musiani D, Konda JD, Pavan S, et al. Heat-shock protein 27 (HSP27, HSPB1) is up-regulated by MET kinase inhibitors and confers resistance to MET-targeted therapy[J]. FASEB J, 2014, 28(9): 4055–4067. doi: 10.1096/fj.13-247924
|
[11] |
Straume O, Shimamura T, Lampa MJG, et al. Suppression of heat shock protein 27 induces long-term dormancy in human breast cancer[J]. Proc Natl Acad Sci USA, 2012, 109(22): 8699–8704. doi: 10.1073/pnas.1017909109
|
[12] |
Motawi TK, Ahmed SA, A Hamed M, et al. Melatonin and/or rowatinex attenuate streptozotocin-induced diabetic renal injury in rats[J]. J Biomed Res, 2019, 33(2): 113–121. doi: 10.7555/JBR.31.20160028.
|
[13] |
Yoo YM, Jang SK, Kim GH, et al. Pharmacological advantages of melatonin in immunosenescence by improving activity of T lymphocytes[J]. J Biomed Res, 2016, 30(4): 314–321.
|
[14] |
Lin SH, Huang YN, Kao JH, et al. Melatonin reverses morphine tolerance by inhibiting microglia activation and HSP27 expression[J]. Life Sci, 2016, 152: 38–43. doi: 10.1016/j.lfs.2016.03.032
|
[15] |
Parent MÉ, El-Zein M, Rousseau MC, et al. Night work and the risk of cancer among men[J]. Am J Epidemiol, 2012, 176(9): 751–759. doi: 10.1093/aje/kws318
|
[16] |
Asghari MH, Moloudizargari M, Ghobadi E, et al. Melatonin as a multifunctional anti-cancer molecule: implications in gastric cancer[J]. Life Sci, 2017, 185: 38–45. doi: 10.1016/j.lfs.2017.07.020
|
[17] |
Li WM, Fan MD, Chen YN, et al. Melatonin induces cell apoptosis in AGS cells through the activation of JNK and P38 MAPK and the suppression of nuclear factor-kappa B: a novel therapeutic implication for gastric cancer[J]. Cell Physiol Biochem, 2015, 37(6): 2323–2338. doi: 10.1159/000438587
|
[18] |
Turbov JM, Twaddle GM, Yang XH, et al. Effects of receptor tyrosine kinase inhibitor A47 on estrogen and growth factor-dependent breast cancer cell proliferation and apoptosis in vitro[J]. J Surg Oncol, 2002, 79(1): 17–29. doi: 10.1002/(ISSN)1096-9098
|
[19] |
Liu R, Wang HL, Deng MJ, et al. Melatonin inhibits reactive oxygen species-driven proliferation, epithelial-mesenchymal transition, and vasculogenic mimicry in oral cancer[J]. Oxid Med Cell Longev, 2018, 2018: 3510970.
|
[20] |
Zamfir Chiru AA, Popescu CR, Gheorghe DC. Melatonin and cancer[J]. J Med Life, 2014, 7(3): 373–374.
|
[21] |
Piazuelo MB, Correa P. Gastric cáncer: overview[J]. Colomb Med, 2013, 44(3): 192–201.
|
[22] |
Xin ZL, Jiang S, Jiang P, et al. Melatonin as a treatment for gastrointestinal cancer: a review[J]. J Pineal Res, 2015, 58(4): 375–387. doi: 10.1111/jpi.2015.58.issue-4
|
[23] |
Leja-Szpak A, Jaworek J, Pierzchalski P, et al. Melatonin induces pro-apoptotic signaling pathway in human pancreatic carcinoma cells (PANC-1)[J]. J Pineal Res, 2010, 49(3): 248–255. doi: 10.1111/jpi.2010.49.issue-3
|
[24] |
Deng WJ, Zhang YJ, Gu L, et al. Heat shock protein 27 downstream of P38-PI3K/Akt signaling antagonizes melatonin-induced apoptosis of SGC-7901 gastric cancer cells[J]. Cancer Cell Int, 2016, 16: 5. doi: 10.1186/s12935-016-0283-8
|
[25] |
Zoubeidi A, Gleave M. Small heat shock proteins in cancer therapy and prognosis[J]. Int J Biochem Cell Biol, 2012, 44(10): 1646–1656. doi: 10.1016/j.biocel.2012.04.010
|
[26] |
Chen HF, Liu SJ, Chen G. Heat shock protein 27 phosphorylation in the proliferation and apoptosis of human umbilical vein endothelial cells induced by high glucose through the phosphoinositide 3-kinase/Akt and extracellular signal-regulated kinase 1/2 pathways[J]. Mol Med Rep, 2015, 11(2): 1504–1508. doi: 10.3892/mmr.2014.2884
|
[27] |
Zheng CL, Lin ZY, Zhao ZJ, et al. MAPK-activated protein kinase-2 (MK2)-mediated formation and phosphorylation-regulated dissociation of the signal complex consisting of p38, MK2, Akt, and Hsp27[J]. J Biol Chem, 2006, 281(48): 37215–37226. doi: 10.1074/jbc.M603622200
|
[28] |
Zhang Z, Rui W, Wang ZC, et al. Anti-proliferation and anti-metastasis effect of barbaloin in non-small cell lung cancer via inactivating p38MAPK/Cdc25B/Hsp27 pathway[J]. Oncol Rep, 2017, 38(2): 1172–1180. doi: 10.3892/or.2017.5760
|
[29] |
Liu YY, Qian J, Li X, et al. Long noncoding RNA BX357664 regulates cell proliferation and epithelial-to-mesenchymal transition via inhibition of TGF-β1/p38/HSP27 signaling in renal cell carcinoma[J]. Oncotarget, 2016, 7(49): 81410–81422.
|
[30] |
Du J, Zhang L, Yang Y, et al. ATP depletion-induced actin rearrangement reduces cell adhesion via p38 MAPK-HSP27 signaling in renal proximal tubule cells[J]. Cell Physiol Biochem, 2010, 25(4−5): 501–510. doi: 10.1159/000303055
|
[1] | Izzatullo Ziyoyiddin o`g`li Abdullaev, Ulugbek Gapparjanovich Gayibov, Sirojiddin Zoirovich Omonturdiev, Sobirova Fotima Azamjonovna, Sabina Narimanovna Gayibova, Takhir Fatikhovich Aripov. Molecular pathways in cardiovascular disease under hypoxia: Mechanisms, biomarkers, and therapeutic targets[J]. The Journal of Biomedical Research. DOI: 10.7555/JBR.38.20240387 |
[2] | Tiwari-Heckler Shilpa, Jiang Z. Gordon, Popov Yury, J. Mukamal Kenneth. Daily high-dose aspirin does not lower APRI in the Aspirin-Myocardial Infarction Study[J]. The Journal of Biomedical Research, 2020, 34(2): 139-142. DOI: 10.7555/JBR.33.20190041 |
[3] | Tao Chun'ai, Gan Yongxin, Su Weidong, Li Zhutian, Tang Xiaolan. Effectiveness of hospital disinfection and experience learnt from 11 years of surveillance[J]. The Journal of Biomedical Research, 2019, 33(6): 408-413. DOI: 10.7555/JBR.33.20180118 |
[4] | Huan Liu, Shijiang Zhang, Yongfeng Shao, Xiaohu Lu, Weidong Gu, Buqing Ni, Qun Gu, Junjie Du. Biomechanical characterization of a novel ring connector for sutureless aortic anastomosis[J]. The Journal of Biomedical Research, 2018, 32(6): 454-460. DOI: 10.7555/JBR.31.20170011 |
[5] | Minbo Zang, Qiao Zhou, Yunfei Zhu, Mingxi Liu, Zuomin Zhou. Effects of chemotherapeutic agent bendamustine for nonhodgkin lymphoma on spermatogenesis in mice[J]. The Journal of Biomedical Research, 2018, 32(6): 442-453. DOI: 10.7555/JBR.31.20170023 |
[6] | Kaibo Lin, Shikun Zhang, Jieli Chen, Ding Yang, Mengyi Zhu, Eugene Yujun Xu. Generation and functional characterization of a conditional Pumilio2 null allele[J]. The Journal of Biomedical Research, 2018, 32(6): 434-441. DOI: 10.7555/JBR.32.20170117 |
[7] | Huanqiang Wang, Congying Yang, Siyuan Wang, Tian Wang, Jingling Han, Kai Wei, Fucun Liu, Jida Xu, Xianzhen Peng, Jianming Wang. Cell-free plasma hypermethylated CASZ1, CDH13 and ING2 are promising biomarkers of esophageal cancer[J]. The Journal of Biomedical Research, 2018, 32(6): 424-433. DOI: 10.7555/JBR.32.20170065 |
[8] | Fengzhen Wang, Mingwan Zhang, Dongsheng Zhang, Yuan Huang, Li Chen, Sunmin Jiang, Kun Shi, Rui Li. Preparation, optimization, and characterization of chitosancoated solid lipid nanoparticles for ocular drug delivery[J]. The Journal of Biomedical Research, 2018, 32(6): 411-423. DOI: 10.7555/JBR.32.20160170 |
[9] | Christopher J. Danford, Zemin Yao, Z. Gordon Jiang. Non-alcoholic fatty liver disease: a narrative review of genetics[J]. The Journal of Biomedical Research, 2018, 32(6): 389-400. DOI: 10.7555/JBR.32.20180045 |
[10] | Sundeep?S.?Tumber, Hong?Liu. Epidural abscess after multiple lumbar punctures for labour epidural catheter placement[J]. The Journal of Biomedical Research, 2010, 24(4): 332-335. DOI: 10.1016/S1674-8301(10)60046-2 |
1. | Gowthaman V, Gopalakrishnamurthy TR, Alagesan A, et al. Molecular epidemiological studies of Leucocytozoon caulleryi in commercial layer flocks in Southern peninsular India reveal the presence of new subclusters. J Parasit Dis, 2024, 48(4): 802-809. DOI:10.1007/s12639-024-01705-y |
2. | Elshahawy IS, Mohammed ES, Mawas AS, et al. First microscopic, pathological, epidemiological, and molecular investigation of Leucocytozoon (Apicomplexa: Haemosporida) parasites in Egyptian pigeons. Front Vet Sci, 2024, 11: 1434627. DOI:10.3389/fvets.2024.1434627 |
3. | Agbemelo-Tsomafo C, Adjei S, Kusi KA, et al. Prevalence of Leucocytozoon infection in domestic birds in Ghana. PLoS One, 2023, 18(11): e0294066. DOI:10.1371/journal.pone.0294066 |
4. | González-Olvera M, Hernandez-Colina A, Chantrey J, et al. A non-invasive feather-based methodology for the detection of blood parasites (Haemosporida). Sci Rep, 2023, 13(1): 16712. DOI:10.1038/s41598-023-43932-y |
5. | Boonchuay K, Thomrongsuwannakij T, Chagas CRF, et al. Prevalence and Diversity of Blood Parasites (Plasmodium, Leucocytozoon and Trypanosoma) in Backyard Chickens (Gallus gallus domesticus) Raised in Southern Thailand. Animals (Basel), 2023, 13(17): 2798. DOI:10.3390/ani13172798 |
6. | Tembe D, Malatji MP, Mukaratirwa S. Occurrence, Prevalence, and Distribution of Haemoparasites of Poultry in Sub-Saharan Africa: A Scoping Review. Pathogens, 2023, 12(7): 945. DOI:10.3390/pathogens12070945 |
7. | Valkiūnas G, Iezhova TA. Insights into the Biology of Leucocytozoon Species (Haemosporida, Leucocytozoidae): Why Is There Slow Research Progress on Agents of Leucocytozoonosis?. Microorganisms, 2023, 11(5): 1251. DOI:10.3390/microorganisms11051251 |
8. | Li Z, Ren XX, Zhao YJ, et al. First report of haemosporidia and associated risk factors in red junglefowl (Gallus gallus) in China. Parasit Vectors, 2022, 15(1): 275. DOI:10.1186/s13071-022-05389-2 |
9. | El-Azm KIA, Hamed MF, Matter A, et al. Molecular and pathological characterization of natural co-infection of poultry farms with the recently emerged Leucocytozoon caulleryi and chicken anemia virus in Egypt. Trop Anim Health Prod, 2022, 54(2): 91. DOI:10.1007/s11250-022-03097-8 |
10. | Pohuang T, Jittimanee S, Junnu S. Pathology and molecular characterization of Leucocytozoon caulleryi from backyard chickens in Khon Kaen Province, Thailand. Vet World, 2021, 14(10): 2634-2639. DOI:10.14202/vetworld.2021.2634-2639 |
11. | Khumpim P, Chawengkirttikul R, Junsiri W, et al. Molecular detection and genetic diversity of Leucocytozoon sabrazesi in chickens in Thailand. Sci Rep, 2021, 11(1): 16686. DOI:10.1038/s41598-021-96241-7 |
12. | Piratae S, Vaisusuk K, Chatan W. Prevalence and molecular identification of Leucocytozoon spp. in fighting cocks (Gallus gallus) in Thailand. Parasitol Res, 2021, 120(6): 2149-2155. DOI:10.1007/s00436-021-07131-w |
13. | Valkiūnas G, Iezhova TA. Exo-erythrocytic development of avian malaria and related haemosporidian parasites. Malar J, 2017, 16(1): 101. DOI:10.1186/s12936-017-1746-7 |