Citation: | Ahn Changhwan, Kim Jae-Woo, Park Mi-Jin, Kim Seung Ryul, Lee Sung-Suk, Jeung Eui-Bae. Anti-inflammatory effects of natural volatile organic compounds from Pinus koraiensis and Larix kaempferi in mouse model[J]. The Journal of Biomedical Research, 2019, 33(5): 343-350. DOI: 10.7555/JBR.32.20180058 |
[1] |
Nagineni CN, Kutty RK, Detrick B, et al. Inflammatory cytokines induce intercellular adhesion molecule-1 (ICAM-1) mRNA synthesis and protein secretion by human retinal pigment epithelial cell cultures[J]. Cytokine, 1996, 8(8): 622–630.
|
[2] |
Kawachi S, Jennings S, Panes J, et al. Cytokine and endothelial cell adhesion molecule expression in interleukin-10-deficient mice[J]. Am J Physiol Gastrointest Liver Physiol, 2000, 278(5): G734–G743.
|
[3] |
Barnes PJ. Immunology of asthma and chronic obstructive pulmonary disease[J]. Nat Rev Immunol, 2008, 8(3): 183–192.
|
[4] |
Beasley R, Roche WR, Roberts JA, et al. Cellular events in the bronchi in mild asthma and after bronchial provocation[J]. Am Rev Respir Dis, 1989, 139(3): 806–817.
|
[5] |
Holgate S, Casale T, Wenzel S, et al. The anti-inflammatory effects of omalizumab confirm the central role of IgE in allergic inflammation[J]. J Allergy Clin Immunol, 2005, 115(3): 459–465.
|
[6] |
Nakashima T, Hayashi T, Mizuno T. Regulation of the development of asthmatic inflammation by in situ CD4(+)Foxp3 (+) T cells in a mouse model of late allergic asthma[J]. Inflammation, 2014, 37(5): 1642–1653.
|
[7] |
McConnell HM, Watts TH, Weis RM, et al. Supported planar membranes in studies of cell-cell recognition in the immune system[J]. Biochim Biophys Acta, 1986, 864(1): 95–106.
|
[8] |
Galli SJ, Tsai M, Piliponsky AM. The development of allergic inflammation[J]. Nature, 2008, 454(7203): 445–454.
|
[9] |
Zhang YB, Qin F, Sun HX. Immunosuppressive activity of Semen Persicae ethanol extract on specific antibody and cellular response to ovalbumin in mice[J]. Chem Biodivers, 2006, 3(9): 967–974.
|
[10] |
Choi EM. Antinociceptive and antiinflammatory activities of pine (Pinus densiflora) pollen extract[J]. Phytother Res, 2007, 21(5): 471–475.
|
[11] |
Ince I, Yesil-Celiktas O, Karabay-Yavasoglu NU, et al. Effects of Pinus brutia bark extract and Pycnogenol in a rat model of carrageenan induced inflammation[J]. Phytomedicine, 2009, 16(12): 1101–1104.
|
[12] |
Yang H, Ahn C, Choi IG, et al. Estimation of the environmental effect of natural volatile organic compounds from Chamaecyparis obtusa and their effect on atopic dermatitis-like skin lesions in mice[J]. Mol Med Rep, 2015, 12(1): 345–350.
|
[13] |
Joo SS, Yoo YM, Ko SH, et al. Effects of essential oil from Chamaecypris obtusa on the development of atopic dermatitis-like skin lesions and the suppression of Th cytokines[J]. J Dermatol Sci, 2010, 60(2): 122–125.
|
[14] |
An BS, Kang JH, Yang H, et al. Anti-inflammatory effects of essential oils from Chamaecyparis obtusa via the cyclooxygenase-2 pathway in rats[J]. Mol Med Rep, 2013, 8(1): 255–259.
|
[15] |
Yang H, Jung EM, Ahn C, et al. Elemol from Chamaecyparis obtusa ameliorates 2, 4-dinitrochlorobenzene-induced atopic dermatitis[J]. Int J Mol Med, 2015, 36(2): 463–472.
|
[16] |
Almeida JR, Souza GR, Silva JC, et al. Borneol, a bicyclic monoterpene alcohol, reduces nociceptive behavior and inflammatory response in mice[J]. Sci Worl J, 2013, 2013: 808460.
|
[17] |
Miguel MG. Antioxidant and anti-inflammatory activities of essential oils: a short review[J]. Molecules, 2010, 15(12): 9252–9287.
|
[18] |
Rumchev K, Spickett J, Bulsara M, et al. Association of domestic exposure to volatile organic compounds with asthma in young children[J]. Thorax, 2004, 59(9): 746–751.
|
[19] |
Boguniewicz M, Leung DY. Atopic dermatitis: a disease of altered skin barrier and immune dysregulation[J]. Immunol Rev, 2011, 242(1): 233–246.
|
[20] |
Gebben HJ. Topical immunomodulators, such as tacrolimus and pimecrolimus, in the treatment of atopic dermatitis[J]. Ned Tijdschr Geneeskd, 2005, 149(32): 1816–1817.
|
[21] |
Dharmage SC, Lowe AJ, Matheson MC, et al. Atopic dermatitis and the atopic march revisited[J]. Allergy, 2014, 69(1): 17–27. doi: 10.1111/all.12268
|
[22] |
Abramovits W. Atopic dermatitis[J]. J Am Acad Dermatol, 2005, 53(1 Suppl 1): S86–S93.
|
[23] |
Surh YJ, Na HK, Lee JY, et al. Molecular mechanisms underlying anti-tumor promoting activities of heat-processed Panax ginseng C.A. Meyer[J]. J Korean Med Sci, 2001, 16(Suppl): S38–S41.
|
[24] |
Kawai M, Hirano T, Higa S, et al. Flavonoids and related compounds as anti-allergic substances[J]. Allergol Int, 2007, 56(2): 113–123.
|
[25] |
Tan HY, Zhang AL, Chen D, et al. Chinese herbal medicine for atopic dermatitis: a systematic review[J]. J Am Acad Dermatol, 2013, 69(2): 295–304.
|
[26] |
Jang HW, Ka MH, Lee KG. Antioxidant activity and characterization of volatile extracts of Capsicum annuum L. and Allium spp[J]. Flavour Fragrance J, 2008, 23: 178–184.
|
[27] |
Wang W, Zhou Q, Liu L, et al. Anti-allergic activity of emodin on IgE-mediated activation in RBL-2H3 cells[J]. Pharmacol Rep, 2012, 64(5): 1216–1222.
|
[28] |
Vender RB. Alternative treatments for atopic dermatitis: a selected review[J]. Skin Therapy Lett, 2002, 7(2): 1–5.
|
[29] |
Park D, Jeon JH, Kwon SC, et al. Antioxidative activities of white rose flower extract and pharmaceutical advantages of its hexane fraction via free radical scavenging effects[J]. Biochem Cell Biol, 2009, 87(6): 943–952.
|
[30] |
Navinés-Ferrer A, Serrano-Candelas E, Molina-Molina GJ, et al. IgE-related chronic diseases and anti-IgE-based treatments[J]. J Immunol Res, 2016, 2016: 8163803.
|
[31] |
Heinzel FP, Sadick MD, Holaday BJ, et al. Reciprocal expression of interferon gamma or interleukin 4 during the resolution or progression of murine leishmaniasis. Evidence for expansion of distinct helper T cell subsets[J]. J Exp Med, 1989, 169(1): 59–72.
|
[32] |
Ricciotti E, FitzGerald GA. Prostaglandins and inflammation[J]. Arterioscler Thromb Vasc Biol, 2011, 31(5): 986–1000.
|
[33] |
Oshiro Y, Morris DL. TNF-alpha release from human peripheral blood mononuclear cells to predict the proinflammatory activity of cytokines and growth factors[J]. J Pharmacol Toxicol Methods, 1997, 37(1): 55–59.
|
[34] |
Lyss G, Knorre A, Schmidt TJ, et al. The anti-inflammatory sesquiterpene lactone helenalin inhibits the transcription factor NF-kappaB by directly targeting p65[J]. J Biol Chem, 1998, 273(50): 33508–33516.
|
[35] |
Paduch R, Kandefer-Szerszeń M, Trytek M, et al. Terpenes: substances useful in human healthcare[J]. Arch Immunol Ther Exp (Warsz), 2007, 55(5): 315–327.
|
[36] |
Basholli-Salihu M, Schuster R, Hajdari A, et al. Phytochemical composition, anti-inflammatory activity and cytotoxic effects of essential oils from three Pinus spp[J]. Pharm Biol, 2017, 55(1): 1553–1560.
|
[37] |
Coté H, Boucher MA, Pichette A, et al. Anti-inflammatory, antioxidant, antibiotic, and cytotoxic activities of tanacetum vulgare L. essential oil and its constituents[J]. Medicines (Basel), 2017, 4(2): pii: E34.
|
[38] |
de Cássia da Silveira e Sá R, Andrade LN, de Sousa DP. A review on anti-inflammatory activity of monoterpenes[J]. Molecules, 2013, 18(1): 1227–1254.
|
[39] |
Kim DS, Lee HJ, Jeon YD, et al. Alpha-pinene exhibits anti-inflammatory activity through the suppression of MAPKs and the NF-κB pathway in mouse peritoneal macrophages[J]. Am J Chin Med, 2015, 43(4): 731–742.
|
[40] |
Li XJ, Yang YJ, Li YS, et al. α-Pinene, linalool, and 1-octanol contribute to the topical anti-inflammatory and analgesic activities of frankincense by inhibiting COX-2[J]. J Ethnopharmacol, 2016, 179: 22–26.
|
[41] |
Zhong W, Cui Y, Yu Q, et al. Modulation of LPS-stimulated pulmonary inflammation by Borneol in murine acute lung injury model[J]. Inflammation, 2014, 37(4): 1148–1157.
|
[1] | Yuetong Chen, Chen Li, Yi Shi, Jiali Dai, Yixuan Meng, Shuwei Li, Cuiju Tang, Dongying Gu, Jinfei Chen. Identification of common genetic variants in KCNQ family genes associated with gastric cancer survival in a Chinese population[J]. The Journal of Biomedical Research, 2025, 39(1): 76-86. DOI: 10.7555/JBR.38.20240040 |
[2] | Yujuan Zhang, Kai Lu, Xu Wu, Hanting Liu, Junyi Xin, Xiaowei Wang, Weida Gong, Qinghong Zhao, Meilin Wang, Haiyan Chu, Mulong Du, Guoquan Tao, Zhengdong Zhang. Genetic variants in the Hedgehog signaling pathway genes are associated with gastric cancer risk in a Chinese Han population[J]. The Journal of Biomedical Research, 2022, 36(1): 22-31. DOI: 10.7555/JBR.35.20210091 |
[3] | Qiu Jinchun, Guo Hongli, Li Ling, Xu Zeyue, Xu Zejun, Jing Xia, Hu Yahui, Wen Xiaoyi, Chen Feng, Lu Xiaopeng. Valproic acid therapy decreases serum 25-hydroxyvitamin D level in female infants and toddlers with epilepsy— a pilot longitudinal study[J]. The Journal of Biomedical Research, 2021, 35(1): 61-67. DOI: 10.7555/JBR.34.20200057 |
[4] | Ma Hongxia, Shen Hongbing. From human genome epidemiology to systems epidemiology: current progress and future perspective[J]. The Journal of Biomedical Research, 2020, 34(5): 323-327. DOI: 10.7555/JBR.34.20200027 |
[5] | Naureen Javeed, Debabrata Mukhopadhyay. Exosomes and their role in the micro-/macro-environment: a comprehensive review[J]. The Journal of Biomedical Research, 2017, 31(5): 386-394. DOI: 10.7555/JBR.30.20150162 |
[6] | So-Hye Hong, Jae-Eon Lee, Hong Sung Kim, Young-Jin Jung, DaeYoun Hwang, Jae Ho Lee, Seung Yun Yang, Seung-Chul Kim, Seong-Keun Cho, Beum-Soo An. Effect of vitamin D3 on production of progesterone in porcine granulosa cells by regulation of steroidogenic enzymes[J]. The Journal of Biomedical Research, 2016, 30(3): 203-208. DOI: 10.7555/JBR.30.2016K0012 |
[7] | Rezvan Hashemi, Sakineh Shab Bidar, Moloud Payab, Ramin Heshmat, Ahmad Reza Dorosti-Motlagh. Urgent need of vitamin D supplementation among Iranian elderly: a cross-sectional study[J]. The Journal of Biomedical Research, 2014, 28(6): 509-512. DOI: 10.7555/JBR.28.20140089 |
[8] | Nuan Wang, Xianming Chen, Deqin Geng, Hongli Huang, Hao Zhou. Ginkgo biloba leaf extract improves the cognitive abilities of rats with D-galactose induced dementia[J]. The Journal of Biomedical Research, 2013, 27(1): 29-36. DOI: 10.7555/JBR.27.20120047 |
[9] | Min Zhang, Yan Zhang, Shuaishuai Zhu, Xiaoyu Li, Qing Yang, Hui Bai, Qi Chen. Genetic variants of the class A scavenger receptor gene are associated with coronary artery disease in Chinese[J]. The Journal of Biomedical Research, 2012, 26(6): 418-424. DOI: 10.7555/JBR.26.20110116 |
[10] | Hua Huang, Juan Wu, Guangfu Jin, Hanze Zhang, Yanbing Ding, Zhaolai Hua, Yan Zhou, Yan Xue, Yan Lu, Zhibin Hu, Yaochu Xu, Hongbing Shen. A 5'-flanking region polymorphism in toll-like receptor 4 is associated with gastric cancer in a Chinese population[J]. The Journal of Biomedical Research, 2010, 24(2): 100-106. |
1. | Boda VK, Yasmen N, Jiang J, et al. Pathophysiological significance and modulation of the transient receptor potential canonical 3 ion channel. Med Res Rev, 2024, 44(6): 2510-2544. DOI:10.1002/med.22048 |
2. | Agrawal K, Asthana S, Kumar D. Role of Oxidative Stress in Metabolic Reprogramming of Brain Cancer. Cancers (Basel), 2023, 15(20): 4920. DOI:10.3390/cancers15204920 |
3. | Zhou Y, Pereira G, Tang Y, et al. 3D Porous Scaffold-Based High-Throughput Platform for Cancer Drug Screening. Pharmaceutics, 2023, 15(6): 1691. DOI:10.3390/pharmaceutics15061691 |
4. | Safa AR. Drug and apoptosis resistance in cancer stem cells: a puzzle with many pieces. Cancer Drug Resist, 2022, 5(4): 850-872. DOI:10.20517/cdr.2022.20 |
5. | Gal O, Betzer O, Rousso-Noori L, et al. Antibody Delivery into the Brain by Radiosensitizer Nanoparticles for Targeted Glioblastoma Therapy. J Nanotheranostics, 2022, 3(4): 177-188. DOI:10.3390/jnt3040012 |
6. | Scioli MG, Terriaca S, Fiorelli E, et al. Extracellular Vesicles and Cancer Stem Cells in Tumor Progression: New Therapeutic Perspectives. Int J Mol Sci, 2021, 22(19): 10572. DOI:10.3390/ijms221910572 |
7. | Keyvani-Ghamsari S, Khorsandi K, Rasul A, et al. Current understanding of epigenetics mechanism as a novel target in reducing cancer stem cells resistance. Clin Epigenetics, 2021, 13(1): 120. DOI:10.1186/s13148-021-01107-4 |
8. | Safa AR. Resistance to drugs and cell death in cancer stem cells (CSCs). J Transl Sci, 2020, 6(3): 341. DOI:10.15761/jts.1000341 |
9. | Chandimali N, Koh H, Kim J, et al. BRM270 targets cancer stem cells and augments chemo-sensitivity in cancer. Oncol Lett, 2020, 20(4): 103. DOI:10.3892/ol.2020.11964 |
10. | Mukherjee S. Quiescent stem cell marker genes in glioma gene networks are sufficient to distinguish between normal and glioblastoma (GBM) samples. Sci Rep, 2020, 10(1): 10937. DOI:10.1038/s41598-020-67753-5 |
11. | Zhou JJ, Xiao Y, Li H, et al. Overexpression of Malic Enzyme 2 Indicates Pathological and Clinical Significance in Oral Squamous Cell Carcinoma. Int J Med Sci, 2020, 17(6): 799-806. DOI:10.7150/ijms.43832 |
12. | Sun Z, Wang L, Zhou Y, et al. Glioblastoma Stem Cell-Derived Exosomes Enhance Stemness and Tumorigenicity of Glioma Cells by Transferring Notch1 Protein. Cell Mol Neurobiol, 2020, 40(5): 767-784. DOI:10.1007/s10571-019-00771-8 |
13. | Zhang Q, Xu B, Chen J, et al. Clinical significance of CD133 and Nestin in astrocytic tumor: The correlation with pathological grade and survival. J Clin Lab Anal, 2020, 34(3): e23082. DOI:10.1002/jcla.23082 |
14. | Megías J, Martínez A, San-Miguel T, et al. Pam3CSK4, a TLR2 ligand, induces differentiation of glioblastoma stem cells and confers susceptibility to temozolomide. Invest New Drugs, 2020, 38(2): 299-310. DOI:10.1007/s10637-019-00788-2 |
15. | Li Z, Chen Y, An T, et al. Nuciferine inhibits the progression of glioblastoma by suppressing the SOX2-AKT/STAT3-Slug signaling pathway. J Exp Clin Cancer Res, 2019, 38(1): 139. DOI:10.1186/s13046-019-1134-y |
16. | Ghosh D, Nandi S, Bhattacharjee S. Combination therapy to checkmate Glioblastoma: clinical challenges and advances. Clin Transl Med, 2018, 7(1): 33. DOI:10.1186/s40169-018-0211-8 |
17. | Grande S, Palma A, Ricci-Vitiani L, et al. Metabolic Heterogeneity Evidenced by MRS among Patient-Derived Glioblastoma Multiforme Stem-Like Cells Accounts for Cell Clustering and Different Responses to Drugs. Stem Cells Int, 2018, 2018: 3292704. DOI:10.1155/2018/3292704 |
18. | Zuccarini M, Giuliani P, Ziberi S, et al. The Role of Wnt Signal in Glioblastoma Development and Progression: A Possible New Pharmacological Target for the Therapy of This Tumor. Genes (Basel), 2018, 9(2): 105. DOI:10.3390/genes9020105 |
19. | Bhere D, Tamura K, Wakimoto H, et al. microRNA-7 upregulates death receptor 5 and primes resistant brain tumors to caspase-mediated apoptosis. Neuro Oncol, 2018, 20(2): 215-224. DOI:10.1093/neuonc/nox138 |
20. | Lee S, Kwon MC, Jang JP, et al. The ginsenoside metabolite compound K inhibits growth, migration and stemness of glioblastoma cells. Int J Oncol, 2017, 51(2): 414-424. DOI:10.3892/ijo.2017.4054 |
21. | Jovčevska I, Zupanec N, Urlep Ž, et al. Differentially expressed proteins in glioblastoma multiforme identified with a nanobody-based anti-proteome approach and confirmed by OncoFinder as possible tumor-class predictive biomarker candidates. Oncotarget, 2017, 8(27): 44141-44158. DOI:10.18632/oncotarget.17390 |
22. | Hiramatsu H, Kobayashi K, Kobayashi K, et al. The role of the SWI/SNF chromatin remodeling complex in maintaining the stemness of glioma initiating cells. Sci Rep, 2017, 7(1): 889. DOI:10.1038/s41598-017-00982-3 |
23. | Zheng X, Pang B, Gu G, et al. Melatonin Inhibits Glioblastoma Stem-like cells through Suppression of EZH2-NOTCH1 Signaling Axis. Int J Biol Sci, 2017, 13(2): 245-253. DOI:10.7150/ijbs.16818 |
24. | Bijangi-Vishehsaraei K, Reza Saadatzadeh M, Wang H, et al. Sulforaphane suppresses the growth of glioblastoma cells, glioblastoma stem cell-like spheroids, and tumor xenografts through multiple cell signaling pathways. J Neurosurg, 2017, 127(6): 1219-1230. DOI:10.3171/2016.8.JNS161197 |
25. | Majewska E, Szeliga M. AKT/GSK3β Signaling in Glioblastoma. Neurochem Res, 2017, 42(3): 918-924. DOI:10.1007/s11064-016-2044-4 |
26. | Kanabur P, Guo S, Simonds GR, et al. Patient-derived glioblastoma stem cells respond differentially to targeted therapies. Oncotarget, 2016, 7(52): 86406-86419. DOI:10.18632/oncotarget.13415 |
27. | Wang K, Kievit FM, Erickson AE, et al. Culture on 3D Chitosan-Hyaluronic Acid Scaffolds Enhances Stem Cell Marker Expression and Drug Resistance in Human Glioblastoma Cancer Stem Cells. Adv Healthc Mater, 2016, 5(24): 3173-3181. DOI:10.1002/adhm.201600684 |