Citation: | Qiu Jinchun, Guo Hongli, Li Ling, Xu Zeyue, Xu Zejun, Jing Xia, Hu Yahui, Wen Xiaoyi, Chen Feng, Lu Xiaopeng. Valproic acid therapy decreases serum 25-hydroxyvitamin D level in female infants and toddlers with epilepsy— a pilot longitudinal study[J]. The Journal of Biomedical Research, 2021, 35(1): 61-67. DOI: 10.7555/JBR.34.20200057 |
ΔThese authors contributed equally to this work.
[1] |
Wrzosek M, Łukaszkiewicz J, Wrzosek M, et al. Vitamin D and the central nervous system[J]. Pharmacol Rep, 2013, 65(2): 271–278. doi: 10.1016/S1734-1140(13)71003-X
|
[2] |
Borowicz KK, Morawska M, Furmanek-Karwowska K, et al. Cholecalciferol enhances the anticonvulsant effect of conventional antiepileptic drugs in the mouse model of maximal electroshock[J]. Eur J Pharmacol, 2007, 573(1–3): 111–115. doi: 10.1016/j.ejphar.2007.07.002
|
[3] |
Miratashi Yazdi SA, Abbasi M, Miratashi Yazdi SM. Epilepsy and vitamin D: a comprehensive review of current knowledge[J]. Rev Neurosci, 2017, 28(2): 185–201. doi: 10.1515/revneuro-2016-0044
|
[4] |
Procopio M, Marriott PK, Davies RJE. Seasonality of birth in epilepsy: a southern Hemisphere study[J]. Seizure, 2006, 15(1): 17–21. doi: 10.1016/j.seizure.2005.10.001
|
[5] |
Shellhaas RA, Barks AK, Joshi SM. Prevalence and risk factors for vitamin D insufficiency among children with epilepsy[J]. Pediatr Neurol, 2010, 42(6): 422–426. doi: 10.1016/j.pediatrneurol.2010.03.004
|
[6] |
Bergqvist AGC, Schall JI, Stallings VA. Vitamin D status in children with intractable epilepsy, and impact of the ketogenic diet[J]. Epilepsia, 2007, 48(1): 66–71. doi: 10.1111/j.1528-1167.2006.00803.x
|
[7] |
Turan MI, Cayir A, Ozden O, et al. An examination of the mutual effects of valproic acid, carbamazepine, and phenobarbital on 25-hydroxyvitamin D levels and thyroid function tests[J]. Neuropediatrics, 2014, 45(1): 16–21. doi: 10.1055/s-0033-1349226
|
[8] |
Verrotti A, Agostinelli S, Coppola G, et al. A 12-month longitudinal study of calcium metabolism and bone turnover during valproate monotherapy[J]. Eur J Neurol, 2010, 17(2): 232–237. doi: 10.1111/j.1468-1331.2009.02773.x
|
[9] |
Xu ZJ, Jing X, Li GZ, et al. Valproate decreases vitamin D levels in pediatric patients with epilepsy[J]. Seizure, 2019, 71: 60–65. doi: 10.1016/j.seizure.2019.06.009
|
[10] |
Fong CY, Kong AN, Poh BK, et al. Vitamin D deficiency and its risk factors in Malaysian children with epilepsy[J]. Epilepsia, 2016, 57(8): 1271–1279. doi: 10.1111/epi.13443
|
[11] |
Geng XJ, Kang X, Wong PCM. Autism spectrum disorder risk prediction: A systematic review of behavioral and neural investigations[J]. Prog Mol Biol Transl Sci, 2020, 173: 91–137. doi: 10.1016/bs.pmbts.2020.04.015
|
[12] |
Holick MF, Binkley NC, Bischoff-Ferrari HA, et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline[J]. J Clin Endocrinol Metab, 2011, 96(7): 1911–1930. doi: 10.1210/jc.2011-0385
|
[13] |
Guo HL, Jing X, Sun JY, et al. Valproic acid and the liver injury in patients with epilepsy: an update[J]. Curr Pharm Des, 2019, 25(3): 343–351. doi: 10.2174/1381612825666190329145428
|
[14] |
Borusiak P, Langer T, Heruth M, et al. Antiepileptic drugs and bone metabolism in children: data from 128 patients[J]. J Child Neurol, 2013, 28(2): 176–183. doi: 10.1177/0883073812443005
|
[15] |
Kim SH, Lee JW, Choi KG, et al. A 6-month longitudinal study of bone mineral density with antiepileptic drug monotherapy[J]. Epilepsy Behav, 2007, 10(2): 291–295. doi: 10.1016/j.yebeh.2006.11.007
|
[16] |
Durá-Travé T, Gallinas-Victoriano F, Malumbres-Chacón M, et al. Vitamin D deficiency in children with epilepsy taking valproate and levetiracetam as monotherapy[J]. Epilepsy Res, 2018, 139: 80–84. doi: 10.1016/j.eplepsyres.2017.11.013
|
[17] |
Chaudhuri JR, Mridula KR, Rathnakishore C, et al. Association of 25-Hydroxyvitamin D Deficiency in Pediatric Epileptic Patients[J]. Iran J Child Neurol, 2017, 11(2): 48–56. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5493830/
|
[18] |
Poh BK, Ng BK, Siti Haslinda MD, et al. Nutritional status and dietary intakes of children aged 6 months to 12 years: findings of the Nutrition Survey of Malaysian Children (SEANUTS Malaysia)[J]. Br J Nutr, 2013, 110(S3): S21–S35. doi: 10.1017/S0007114513002092
|
[19] |
Lee SH, Yu J. Risk factors of vitamin D deficiency in children with epilepsy taking anticonvulsants at initial and during follow-up[J]. Ann Pediatr Endocrinol Metab, 2015, 20(4): 198–205. doi: 10.6065/apem.2015.20.4.198
|
[20] |
Yetley EA. Assessing the vitamin D status of the US population[J]. Am J Clin Nutr, 2008, 88(2): 558S–564S. doi: 10.1093/ajcn/88.2.558S
|
[21] |
Nettekoven S, Ströhle A, Trunz B, et al. Effects of antiepileptic drug therapy on vitamin D status and biochemical markers of bone turnover in children with epilepsy[J]. Eur J Pediatr, 2008, 167(12): 1369–1377. doi: 10.1007/s00431-008-0672-7
|
[22] |
Lee YJ, Park KM, Kim YM, et al. Longitudinal change of vitamin D status in children with epilepsy on antiepileptic drugs: prevalence and risk factors[J]. Pediatr Neurol, 2015, 52(2): 153–159. doi: 10.1016/j.pediatrneurol.2014.10.008
|
[23] |
Yildiz EP, Poyrazoglu Ş, Bektas G, et al. Potential risk factors for vitamin D levels in medium- and long-term use of antiepileptic drugs in childhood[J]. Acta Neurol Belg, 2017, 117(2): 447–453. doi: 10.1007/s13760-017-0775-x
|
[24] |
Wimalawansa SJ. Associations of vitamin D with insulin resistance, obesity, type 2 diabetes, and metabolic syndrome[J]. J Steroid Biochem Mol Biol, 2018, 175: 177–189. doi: 10.1016/j.jsbmb.2016.09.017
|
[25] |
Romoli M, Mazzocchetti P, D'Alonzo R, et al. Valproic acid and epilepsy: from molecular mechanisms to clinical evidences[J]. Curr Neuropharmacol, 2019, 17(10): 926–946. doi: 10.2174/1570159X17666181227165722
|
[26] |
Thiel R. Might calcium disorders cause or contribute to myoclonic seizures in epileptics?[J]. Med Hypotheses, 2006, 66(5): 969–974. doi: 10.1016/j.mehy.2005.11.018
|
[27] |
McGrath JJ, Féron FP, Burne THJ, et al. Vitamin D3—implications for brain development[J]. J Steroid Biochem Mol Biol, 2004, 89–90: 557–560. doi: 10.1016/j.jsbmb.2004.03.070
|
[28] |
Bivona G, Agnello L, Bellia C, et al. Non-skeletal activities of vitamin D: from physiology to brain pathology[J]. Medicina (Kaunas), 2019, 55(7): 341. doi: 10.3390/medicina55070341
|
[29] |
Grecksch G, Rüthrich H, Höllt V, et al. Transient prenatal vitamin D deficiency is associated with changes of synaptic plasticity in the dentate gyrus in adult rats[J]. Psychoneuroendocrinology, 2009, 34(Suppl 1): S258–S264. doi: 10.1016/j.psyneuen.2009.07.004
|
1. | Mehra S, Ahsan AU, Sharma M, et al. Gestational Fisetin Exerts Neuroprotection by Regulating Mitochondria-Directed Canonical Wnt Signaling, BBB Integrity, and Apoptosis in Prenatal VPA-Induced Rodent Model of Autism. Mol Neurobiol, 2023. DOI:10.1007/s12035-023-03826-6. Online ahead of print |
2. | Shnayder NA, Grechkina VV, Trefilova VV, et al. Valproate-Induced Metabolic Syndrome. Biomedicines, 2023, 11(5): 1499. DOI:10.3390/biomedicines11051499 |
3. | Zahedi E, Sadr SS, Sanaeierad A, et al. Valproate-induced murine autism spectrum disorder is associated with dysfunction of amygdala parvalbumin interneurons and downregulation of AMPK/SIRT1/PGC1α signaling. Metab Brain Dis, 2023, 38(6): 2093-2103. DOI:10.1007/s11011-023-01227-1 |
4. | Dong N, Guo HL, Hu YH, et al. Association between serum vitamin D status and the anti-seizure treatment in Chinese children with epilepsy. Front Nutr, 2022, 9: 968868. DOI:10.3389/fnut.2022.968868 |