Citation: | Hardy-Rando Eugenio, Fernandez-Patron Carlos. Emerging pathways of communication between the heart and non-cardiac organs[J]. The Journal of Biomedical Research, 2019, 33(3): 145-155. DOI: 10.7555/JBR.32.20170137 |
[1] |
GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013[J]. Lancet, 2015, 385(9963): 117-171. doi: 10.1016/S0140-6736(14)61682-2
|
[2] |
de Bold AJ, Borenstein HB, Veress AT, et al. A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats[J]. Life Sci, 1981, 28(1): 89-94. doi: 10.1016/0024-3205(81)90370-2
|
[3] |
de Bold AJ, Salerno TA. Natriuretic activity of extracts obtained from hearts of different species and from various rat tissues[J]. Can J Physiol Pharmacol, 1983, 61(2): 127-130. doi: 10.1139/y83-018
|
[4] |
de Bold AJ, Flynn TG. Cardionatrin I- a novel heart peptide with potent diuretic and natriuretic properties[J]. Life Sci, 1983, 33(3): 297-302. doi: 10.1016/0024-3205(83)90390-9
|
[5] |
Flynn TG, Davies PL, Kennedy BP, et al. Alignment of rat cardionatrin sequences with the preprocardionatrin sequence from complementary DNA[J]. Science, 1985, 228(4697): 323- 325. doi: 10.1126/science.3157217
|
[6] |
Grueter CE, van Rooij E, Johnson BA, et al. A cardiac microRNA governs systemic energy homeostasis by regulation of MED13[J]. Cell, 2012, 149(3): 671-683. doi: 10.1016/j.cell.2012.03.029
|
[7] |
Berry E, Hernandez-Anzaldo S, Ghomashchi F, et al. Matrix metalloproteinase-2 negatively regulates cardiac secreted phospholipase A2 to modulate inflammation and fever[J]. J Am Heart Assoc, 2015, 4(4): e001868. http://cn.bing.com/academic/profile?id=0a330cd5b19da9f1facf66e1c49bb152&encoded=0&v=paper_preview&mkt=zh-cn
|
[8] |
Hernandez-Anzaldo S, Berry E, Brglez V, et al. Identification of a novel heart-liver axis: matrix metalloproteinase-2 negatively regulates cardiac secreted phospholipase A2 to modulate lipid metabolism and inflammation in the liver[J]. J Am Heart Assoc, 2015, 4(11): e002553. http://cn.bing.com/academic/profile?id=623168e4f29ceca9a7440a5d95ac7f77&encoded=0&v=paper_preview&mkt=zh-cn
|
[9] |
Wang X, Berry E, Hernandez-Anzaldo S, et al. Matrix metalloproteinase-2 mediates a mechanism of metabolic cardioprotection consisting of negative regulation of the sterol regulatory element-binding protein-2/3-hydroxy-3-methylglutaryl-CoA reductase pathway in the heart[J]. Hypertension, 2015, 65(4):882-888. doi: 10.1161/HYPERTENSIONAHA.114.04989
|
[10] |
Sudoh T, Kangawa K, Minamino N, et al. A new natriuretic peptide in porcine brain[J]. Nature, 1988, 332(6159): 78-81. doi: 10.1038/332078a0
|
[11] |
Nakamura S, Naruse M, Naruse K, et al. Atrial natriuretic peptide and brain natriuretic peptide coexist in the secretory granules of human cardiac myocytes[J]. Am J Hypertens, 1991, 4(11): 909-912. doi: 10.1093/ajh/4.11.909
|
[12] |
Clerico A, Giannoni A, Vittorini S, et al. Thirty years of the heart as an endocrine organ: physiological role and clinical utility of cardiac natriuretic hormones[J]. Am J Physiol Heart Circ Physiol, 2011, 301(1): H12-H20. doi: 10.1152/ajpheart.00226.2011
|
[13] |
Del Ry S, Cabiati M, Vozzi F, et al. Expression of C-type natriuretic peptide and its receptor NPR-B in cardiomyocytes[J]. Peptides, 2011, 32(8): 1713-1718. doi: 10.1016/j.peptides.2011.06.014
|
[14] |
Ogawa T, de Bold AJ. The heart as an endocrine organ[J]. Endocr Connect, 2014, 3(2): R31-R44. doi: 10.1530/EC-14-0012
|
[15] |
Sagnella GA. Measurement and significance of circulating natriuretic peptides in cardiovascular disease[J]. Clin Sci (Lond), 1998, 95(5): 519-529. doi: 10.1042/cs0950519
|
[16] |
Rademaker MT, Richards AM. Cardiac natriuretic peptides for cardiac health[J]. Clin Sci (Lond), 2005, 108(1): 23-36. doi: 10.1042/CS20040253
|
[17] |
Wei CM, Heublein DM, Perrella MA, et al. Natriuretic peptide system in human heart failure[J]. Circulation, 1993, 88(3): 1004-1009. doi: 10.1161/01.CIR.88.3.1004
|
[18] |
Del Ry S, Passino C, Maltinti M, et al. C-type natriuretic peptide plasma levels increase in patients with chronic heart failure as a function of clinical severity[J]. Eur J Heart Fail, 2005, 7(7): 1145-1148. doi: 10.1016/j.ejheart.2004.12.009
|
[19] |
Mangat H, de Bold AJ. Stretch-induced atrial natriuretic factor release utilizes a rapidly depleting pool of newly synthesized hormone[J]. Endocrinology, 1993, 133(3): 1398-1403. doi: 10.1210/endo.133.3.8365374
|
[20] |
Arvan P, Kuliawat R, Prabakaran D, et al. Protein discharge from immature secretory granules displays both regulated and constitutive characteristics[J]. J Biol Chem, 1991, 266(22): 14171-14174. http://cn.bing.com/academic/profile?id=3d1917dc526ada35fdcd43ca12faa001&encoded=0&v=paper_preview&mkt=zh-cn
|
[21] |
Gerzer R, Witzgall H, Tremblay J, et al. Rapid increase in plasma and urinary cyclic GMP after bolus injection of atrial natriuretic factor in man. J Clin Endocrinol Metab, 1985, 61(6): 1217-1219. doi: 10.1210/jcem-61-6-1217
|
[22] |
Lincoln TM, Cornwell TL. Intracellular cyclic GMP receptor proteins[J]. FASEB J, 1993, 7(2): 328-338. doi: 10.1096/fasebj.7.2.7680013
|
[23] |
Melo LG, Steinhelper ME, Pang SC, et al. ANP in regulation of arterial pressure and fluid-electrolyte balance: lessons from genetic mouse models[J]. Physiol Genomics, 2000, 3(1): 45- 58. doi: 10.1152/physiolgenomics.2000.3.1.45
|
[24] |
Vanderheyden M, Bartunek J, Goethals M. Brain and other natriuretic peptides: molecular aspects[J]. Eur J Heart Fail, 2004, 6(3): 261-268. doi: 10.1016/j.ejheart.2004.01.004
|
[25] |
Wiley KE, Davenport AP. Physiological antagonism of endothelin-1 in human conductance and resistance coronary artery[J]. Br J Pharmacol, 2001, 133(4): 568-574. doi: 10.1038/sj.bjp.0704119
|
[26] |
Furuya M, Yoshida M, Hayashi Y, et al. C-type natriuretic peptide is a growth inhibitor of rat vascular smooth muscle cells[J]. Biochem Biophys Res Commun, 1991, 177(3): 927-931. doi: 10.1016/0006-291X(91)90627-J
|
[27] |
Franco-Saenz R, Atarashi K, Takagi M, et al. Effect of atrial natriuretic factor on renin and aldosterone[J]. J Cardiovasc Pharmacol, 1989, 13(Suppl 6): S31-S35. http://cn.bing.com/academic/profile?id=760f36823fa43a7e0f837c2f82c4bc8d&encoded=0&v=paper_preview&mkt=zh-cn
|
[28] |
Brenner BM, Ballermann BJ, Gunning ME, et al. Diverse biological actions of atrial natriuretic peptide[J]. Physiol Rev, 1990, 70(3): 665-699. doi: 10.1152/physrev.1990.70.3.665
|
[29] |
Burger AJ. A review of the renal and neurohormonal effects of B-type natriuretic peptide[J]. Congest Heart Fail, 2005, 11(1): 30-38. doi: 10.1111/chf.2005.11.issue-1
|
[30] |
Sengenès C, Berlan M, De Glisezinski I, et al. Natriuretic peptides: a new lipolytic pathway in human adipocytes[J]. FASEB J, 2000, 14(10): 1345-1351. doi: 10.1096/fasebj.14.10.1345
|
[31] |
Sengenes C, Stich V, Berlan M, et al. Increased lipolysis in adipose tissue and lipid mobilization to natriuretic peptides during low-calorie diet in obese women[J]. FASEB J, 2000, 14(10): 1345-1351. doi: 10.1096/fasebj.14.10.1345
|
[32] |
Sengenès C, Zakaroff-Girard A, Moulin A, et al. Natriuretic peptide-dependent lipolysis in fat cells is a primate specificity[J]. Am J Physiol Regul Integr Comp Physiol, 2002, 283(1): R257-R265. doi: 10.1152/ajpregu.00453.2001
|
[33] |
Sengenes C, Bouloumie A, Hauner H, et al. Involvement of a cGMP-dependent pathway in the natriuretic peptide-mediated hormone sensitive lipase phosphorylation in human adipocytes[J]. J Biol Chem, 2003, 278(49):48617-48626. doi: 10.1074/jbc.M303713200
|
[34] |
Galitzky J, Sengenès C, Thalamas C, et al. The lipid-mobilizing effect of atrial natriuretic peptide is unrelated to sympathetic nervous system activation or obesity in young men[J]. J Lipid Res, 2001, 42(4): 536-544. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_ab553f32c343e3e743a5f041c67677d5
|
[35] |
Sarzani R, Marcucci P, Salvi F, et al. Angiotensin II stimulates and atrial natriuretic peptide inhibits human visceral adipocyte growth[J]. Int J Obes, 2008, 32(2): 259-267. doi: 10.1038/sj.ijo.0803724
|
[36] |
Pierkes M, Gambaryan S, Bokník P, et al. Increased effects of C-type natriuretic peptide on cardiac ventricular contractility and relaxation in guanylyl cyclase A-deficient mice[J]. Cardiovasc Res, 2002, 53(4): 852-861. doi: 10.1016/S0008-6363(01)00543-0
|
[37] |
Brusq JM, Mayoux E, Guigui L, et al. Effects of C-type natriuretic peptide on rat cardiac contractility[J]. Br J Pharmacol, 1999, 128(1): 206-212. doi: 10.1038/sj.bjp.0702766
|
[38] |
Beaulieu P, Cardinal R, Pagé P, et al. Positive chronotropic and inotropic effects of C-type natriuretic peptide in dogs[J]. Am J Physiol, 1997, 273(4 Pt 2): H1933-H1940.
|
[39] |
Tokudome T, Horio T, Soeki T, et al. Inhibitory effect of C-type natriuretic peptide (CNP) on cultured cardiac myocyte hypertrophy: interference between CNP and endothelin-1 signaling pathways[J]. Endocrinology, 2004, 145(5): 2131- 2140. doi: 10.1210/en.2003-1260
|
[40] |
Santhekadur PK, Kumar DP, Seneshaw M, et al. The multifaceted role of natriuretic peptides in metabolic syndrome[J]. Biomed Pharmacother, 2017, 92: 826-835. doi: 10.1016/j.biopha.2017.05.136
|
[41] |
Schlueter N, de Sterke A, Willmes DM, et al. Metabolic actions of natriuretic peptides and therapeutic potential in the metabolic syndrome[J]. Pharmacol Ther, 2014, 144(1): 12-27. doi: 10.1016/j.pharmthera.2014.04.007
|
[42] |
Moro C. Natriuretic peptides and fat metabolism[J]. Curr Opin Clin Nutr Metab Care, 2013, 16(6): 645-649. doi: 10.1097/MCO.0b013e32836510ed
|
[43] |
Gruden G, Landi A, Bruno G. Natriuretic peptides, heart, and adipose tissue: new findings and future developments for diabetes research[J]. Diabetes Care, 2014, (11):2899-2908.
|
[44] |
Wang D, Oparil S, Feng JA, et al. Effects of pressure overload on extracellular matrix expression in the heart of the atrial natriuretic peptide-null mouse[J]. Hypertension, 2003, 42(1): 88-95. doi: 10.1161/01.HYP.0000074905.22908.A6
|
[45] |
Vellaichamy E, Khurana ML, Fink J, et al. Involvement of the NF-kappa B/matrix metalloproteinase pathway in cardiac fibrosis of mice lacking guanylyl cyclase/natriuretic peptide receptor A[J]. J Biol Chem, 2005, 280(19): 19230-19242. doi: 10.1074/jbc.M411373200
|
[46] |
Subramanian U, Kumar P, Mani I, et al. Retinoic acid and sodium butyrate suppress the cardiac expression of hypertrophic markers and proinflammatory mediators in Npr1 genedisrupted haplotype mice[J]. Physiol Genomics, 2016, 48(7): 477-490. doi: 10.1152/physiolgenomics.00073.2015
|
[47] |
Sarzani R, Salvi F, Dessì-Fulgheri P, et al. Renin-angiotensin system, natriuretic peptides, obesity, metabolic syndrome, and hypertension: an integrated view in humans[J]. J Hypertens, 2008, 26(5): 831-843. doi: 10.1097/HJH.0b013e3282f624a0
|
[48] |
Clerico A, Giannoni A, Vittorini S, et al. The paradox of low BNP levels in obesity[J]. Heart Fail Rev, 2012, 17(1): 81- 96. doi: 10.1007/s10741-011-9249-z
|
[49] |
Moro C. Targeting cardiac natriuretic peptides in the therapy of diabetes and obesity[J]. Expert Opin Ther Targets, 2016, 20(12): 1445-1452. doi: 10.1080/14728222.2016.1254198
|
[50] |
Baskin KK, Grueter CE, Kusminski CM, et al. MED13- dependent signaling from the heart confers leanness by enhancing metabolism in adipose tissue and liver[J]. EMBO Mol Med, 2014, 6(12): 1610-1621. doi: 10.15252/emmm.201404218
|
[51] |
Lee JH, Bassel-Duby R, Olson EN. Heart- and muscle-derived signaling system dependent on MED13 and Wingless controls obesity in Drosophila[J]. Proc Natl Acad Sci USA, 2014, 111(26): 9491-9496. doi: 10.1073/pnas.1409427111
|
[52] |
Konzer A, Ruhs A, Braun T, et al. Global protein quantification of mouse heart tissue based on the SILAC mouse[J]. Methods Mol Biol, 2013, 1005: 39-52. doi: 10.1007/978-1-62703-386-2
|
[53] |
Zanivan S, Krueger M, Mann M. In vivo quantitative proteomics: the SILAC mouse[J]. Methods Mol Biol, 2012, 757: 435-450. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_2953914
|
[54] |
Gioia M, Foster LJ, Overall CM. Cell-based identification of natural substrates and cleavage sites for extracellular proteases by SILAC proteomics[J]. Methods Mol Biol, 2009, 539: 131- 153. doi: 10.1007/978-1-60327-003-8
|
[55] |
Ong SE, Blagoev B, Kratchmarova I, et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics[J]. Mol Cell Proteomics, 2002, 1(5): 376-386. doi: 10.1074/mcp.M200025-MCP200
|
[56] |
Luther SA, Cyster JG. Chemokines as regulators of T cell differentiation[J]. Nat Immunol, 2001, 2(2): 102-107. doi: 10.1038/84205
|
[57] |
White GE, Iqbal AJ, Greaves DR. CC chemokine receptors and chronic inflammation-therapeutic opportunities and pharmacological challenges[J]. Pharmacol Rev, 2013, 65(1): 47-89. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0234029364/
|
[58] |
Steinberg GR, Michell BJ, van Denderen BJ, et al. Tumor necrosis factor alpha-induced skeletal muscle insulin resistance involves suppression of AMP-kinase signaling[J]. Cell Metab, 2006, 4(6): 465-474. doi: 10.1016/j.cmet.2006.11.005
|
[59] |
Tse MCL, Herlea-Pana O, Brobst D, et al. Tumor necrosis factor-alpha promotes phosphoinositide 3-kinase enhancer A and AMP-activated protein kinase interaction to suppress lipid oxidation in skeletal muscle[J]. Diabetes, 2017, 66(7): 1858- 1870. doi: 10.2337/db16-0270
|
[1] | Izzatullo Ziyoyiddin o`g`li Abdullaev, Ulugbek Gapparjanovich Gayibov, Sirojiddin Zoirovich Omonturdiev, Sobirova Fotima Azamjonovna, Sabina Narimanovna Gayibova, Takhir Fatikhovich Aripov. Molecular pathways in cardiovascular disease under hypoxia: Mechanisms, biomarkers, and therapeutic targets[J]. The Journal of Biomedical Research. DOI: 10.7555/JBR.38.20240387 |
[2] | Zhang Lei, McLeod Stephanie T., Vargas Rodolfo, Liu Xiaojian, Young Dorthy K., Dobbs Thomas E.. Subgroup comparison of COVID-19 case and mortality with associated factors in Mississippi: findings from analysis of the first four months of public data[J]. The Journal of Biomedical Research, 2020, 34(6): 446-457. DOI: 10.7555/JBR.34.20200135 |
[3] | Pan Wei, Miyazaki Yasuo, Tsumura Hideyo, Miyazaki Emi, Yang Wei. Identification of county-level health factors associated with COVID-19 mortality in the United States[J]. The Journal of Biomedical Research, 2020, 34(6): 437-445. DOI: 10.7555/JBR.34.20200129 |
[4] | Alexander E. Berezin, Alexander A. Kremzer, Tatayna A. Samura. Circulating thrombospondin-2 in patients with moderate-to-severe chronic heart failure due to coronary artery disease[J]. The Journal of Biomedical Research, 2016, 30(1): 32-39. DOI: 10.7555/JBR.30.20140025 |
[5] | Augustine N Odili, John O Ogedengbe, Maxwell Nwegbu, Felicia O Anumah, Samuel Asala, Jan A Staessen. Nigerian Population Research on Environment, Gene and Health (NIPREGH) - objectives and protocol[J]. The Journal of Biomedical Research, 2014, 28(5): 360-367. DOI: 10.7555/JBR.28.20130199 |
[6] | Samuel Tate, Andrea Griem, Blythe Durbin-Johnson, Clifton Watt, Saul Schaefer. Marked elevation of B-type natriuretic peptide in patients with heart failure and preserved ejection fraction[J]. The Journal of Biomedical Research, 2014, 28(4): 255-261. DOI: 10.7555/JBR.28.20140021 |
[7] | Weihua Zhou, Ji Chen. I -123 metaiodobenzylguanidine imaging for predicting ventricular arrhythmia in heart failure patients[J]. The Journal of Biomedical Research, 2013, 27(6): 460-466. DOI: 10.7555/JBR.27.20130137 |
[8] | Shujuan Zhang, Feng Zhang, Haijian Sun, Yebo Zhou, Ying Han. Enhanced sympathetic activity and cardiac sympathetic afferent reflex in rats with heart failure induced by adriamycin[J]. The Journal of Biomedical Research, 2012, 26(6): 425-431. DOI: 10.7555/JBR.26.20120035 |
[9] | Xi Li, Tingzhong Wang, Ke Han, Xiaozhen Zhuo, Qun Lu, Aiqun Ma. Bisoprolol reverses down-regulation of potassium channel proteins in ventricular tissues of rabbits with heart failure[J]. The Journal of Biomedical Research, 2011, 25(4): 274-279. DOI: 10.1016/S1674-8301(11)60037-7 |
[10] | Sundeep?S.?Tumber, Hong?Liu. Epidural abscess after multiple lumbar punctures for labour epidural catheter placement[J]. The Journal of Biomedical Research, 2010, 24(4): 332-335. DOI: 10.1016/S1674-8301(10)60046-2 |
1. | Guan M, Wang Y. Common variants of vitamin D receptor gene polymorphisms and risk of gastric cancer: A meta-analysis. Medicine (Baltimore), 2024, 103(35): e39527. DOI:10.1097/MD.0000000000039527 |
2. | Abo-Amer YE, Mohamed AA, Elhoseeny MM, et al. Association Between Vitamin D Receptor Polymorphism and the Response to Helicobacter Pylori Treatment. Infect Drug Resist, 2023, 16: 4463-4469. DOI:10.2147/IDR.S414186 |
3. | Liu X, Zhou Y, Zou X. Correlation between Serum 25-Hydroxyvitamin D Levels and Gastric Cancer: A Systematic Review and Meta-Analysis. Curr Oncol, 2022, 29(11): 8390-8400. DOI:10.3390/curroncol29110661 |
4. | Nguyen MT, Huynh NNY, Nguyen DD, et al. Vitamin D intake and gastric cancer in Viet Nam: a case-control study. BMC Cancer, 2022, 22(1): 838. DOI:10.1186/s12885-022-09933-2 |
5. | Kwak JH, Paik JK. Vitamin D Status and Gastric Cancer: A Cross-Sectional Study in Koreans. Nutrients, 2020, 12(7): 2004. DOI:10.3390/nu12072004 |
6. | Durak Ş, Gheybi A, Demirkol Ş, et al. The effects of serum levels, and alterations in the genes of binding protein and receptor of vitamin D on gastric cancer. Mol Biol Rep, 2019, 46(6): 6413-6420. DOI:10.1007/s11033-019-05088-9 |
7. | Kazemian E, Akbari ME, Moradi N, et al. Vitamin D Receptor Genetic Variation and Cancer Biomarkers among Breast Cancer Patients Supplemented with Vitamin D3: A Single-Arm Non-Randomized Before and After Trial. Nutrients, 2019, 11(6): 1264. DOI:10.3390/nu11061264 |
8. | Cai H, Jing C, Chang X, et al. Mutational landscape of gastric cancer and clinical application of genomic profiling based on target next-generation sequencing. J Transl Med, 2019, 17(1): 189. DOI:10.1186/s12967-019-1941-0 |