4.6

CiteScore

2.2

Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Naureen Javeed, Debabrata Mukhopadhyay. Exosomes and their role in the micro-/macro-environment: a comprehensive review[J]. The Journal of Biomedical Research, 2017, 31(5): 386-394. DOI: 10.7555/JBR.30.20150162
Citation: Naureen Javeed, Debabrata Mukhopadhyay. Exosomes and their role in the micro-/macro-environment: a comprehensive review[J]. The Journal of Biomedical Research, 2017, 31(5): 386-394. DOI: 10.7555/JBR.30.20150162

Exosomes and their role in the micro-/macro-environment: a comprehensive review

Funds: 

This work was partly supported by Florida Department of Health Cancer Research Chair Funding, NIH fund-ing (CA150190, HL 70567 and CA78383, and Mayo Clinic Pancreatic Cancer SPORE P50 CA102701 Pilot Project) to DM and NCI training grant 1T32 CA148073 (to DM) Pre-doctoral fellowship to NJ.

More Information
  • Received Date: November 28, 2015
  • Revised Date: December 14, 2015
  • The importance of extracellular vesicles (EVs) in cell-cell communication has long been recognized due to their ability to transfer important cellular cargoes such as DNA, mRNA, miRNAs, and proteins to target cells. Compelling evidence supports the role of EVs in the horizontal transfer of cellular material which has the potential to influence normal cellular physiology and promote various disease states. Of the different types of EVs, exosomes have garnered much attention in the past decade due to their abundance in various biological fluids and ability to affect multiple organ systems. The main focus of this review will be on cancer and how cancer-derived exosomes are important mediators of metastasis, angiogenesis, immune modulation, and the tumor macro-/microenvironment. We will also discuss exosomes as potential biomarkers for cancers due to their abundance in biological fluids, ease of uptake, and cellular content. Exosome use in diagnosis, prognosis, and in establishing treatment regimens has enormous potential to revolutionize patient care.
  • Related Articles

    [1]Huiyong Peng, Zhangwei Zhu, Jie Xing, Qian Xu, Changfeng Man, Shengjun Wang, Yingzhao Liu, Zhengdong Zhang. Expression profiling and bioinformatics analysis of serum exosomal circular RNAs in lymph node metastasis of papillary thyroid carcinoma[J]. The Journal of Biomedical Research. DOI: 10.7555/JBR.37.20230304
    [2]Fanyu Peng, Yizhi Ge, Rongrong Wang, Dingdong Hu, Xiang Cao, Yujie Zhang, Dan Zong, Xia He. Identifying nasopharyngeal carcinoma patients with metachronous metastasis sensitive to local treatment: a real-world study[J]. The Journal of Biomedical Research, 2022, 36(4): 221-230. DOI: 10.7555/JBR.36.20220060
    [3]Zhang Weifeng, Chen Han, Zhang Guoxin, Jin Guangfu. A nomogram for predicting lymph node metastasis in superficial esophageal squamous cell carcinoma[J]. The Journal of Biomedical Research, 2021, 35(5): 361-370. DOI: 10.7555/JBR.35.20210034
    [4]Sun Zhen, Liu Chen, Cheng Steven Y.. Identification of four novel prognosis biomarkers and potential therapeutic drugs for human colorectal cancer by bioinformatics analysis[J]. The Journal of Biomedical Research, 2021, 35(1): 21-35. DOI: 10.7555/JBR.34.20200021
    [5]Huanqiang Wang, Congying Yang, Siyuan Wang, Tian Wang, Jingling Han, Kai Wei, Fucun Liu, Jida Xu, Xianzhen Peng, Jianming Wang. Cell-free plasma hypermethylated CASZ1, CDH13 and ING2 are promising biomarkers of esophageal cancer[J]. The Journal of Biomedical Research, 2018, 32(6): 424-433. DOI: 10.7555/JBR.32.20170065
    [6]Hamid A Bakshi, Faruck Lukmanul Hakkim, Smitha Sam, Farideh Javid, Luay Rashan. Dietary crocin reverses melanoma metastasis[J]. The Journal of Biomedical Research, 2018, 32(1): 39-50. DOI: 10.7555/JBR.31.20160120
    [7]Jianming Wu, Ling Li. Autoantibodies in Alzheimer's disease: potential biomarkers, pathogenic roles, and therapeutic implications[J]. The Journal of Biomedical Research, 2016, 30(5): 361-372. DOI: 10.7555/JBR.30.20150131
    [8]Dongsheng Gu, Kelly E Schlotman, Jingwu Xie. Deciphering the role of hedgehog signaling in pancreatic cancer[J]. The Journal of Biomedical Research, 2016, 30(5): 353-360. DOI: 10.7555/JBR.30.20150107
    [9]Nisha Gupta, Dan G. Duda. Role of stromal cell-derived factor 1α pathway in bone metastatic prostate cancer[J]. The Journal of Biomedical Research, 2016, 30(3): 181-185. DOI: 10.7555/JBR.30.20150114
    [10]Qi Zheng, Kejun Nan, Yu Yao. Gastric cancer presenting with solitary gigantic pelvic metastasis[J]. The Journal of Biomedical Research, 2012, 26(4): 303-306. DOI: 10.7555/JBR.26.20110056
  • Cited by

    Periodical cited type(65)

    1. Wang T, Ye L, Zhou Y, et al. Pancreatic cancer-derived exosomal miR-510 promotes macrophage M2 polarization and facilitates cancer cell aggressive phenotypes. Hum Cell, 2024, 38(1): 17. DOI:10.1007/s13577-024-01144-0
    2. Ismail M, Fadul MM, Taha R, et al. Dynamic role of exosomal long non-coding RNA in liver diseases: pathogenesis and diagnostic aspects. Hepatol Int, 2024. DOI:10.1007/s12072-024-10722-1. Online ahead of print
    3. Xiong JL, Wang YX, Luo JY, et al. Pituitary-derived small extracellular vesicles promote liver repair by its cargo miR-143-3p. Sci Rep, 2024, 14(1): 16635. DOI:10.1038/s41598-024-67434-7
    4. Doulabi EM, Dubois L, Löf L, et al. Increased levels of thymidine kinase 1 in malignant cell-derived extracellular vesicles. Biochem Biophys Rep, 2024, 39: 101761. DOI:10.1016/j.bbrep.2024.101761
    5. Coelho-Ribeiro B, Silva HG, Sampaio-Marques B, et al. Inflammation and Exosomes in Fabry Disease Pathogenesis. Cells, 2024, 13(8): 654. DOI:10.3390/cells13080654
    6. Mesquita FCP, King M, da Costa Lopez PL, et al. Laminin Alpha 2 Enhances the Protective Effect of Exosomes on Human iPSC-Derived Cardiomyocytes in an In Vitro Ischemia-Reoxygenation Model. Int J Mol Sci, 2024, 25(7): 3773. DOI:10.3390/ijms25073773
    7. Choi JY, Seok HJ, Lee DH, et al. Tumor-derived miR-6794-5p enhances cancer growth by promoting M2 macrophage polarization. Cell Commun Signal, 2024, 22(1): 190. DOI:10.1186/s12964-024-01570-5
    8. Sayson SG, Ashbaugh A, Cushion MT. Extracellular vesicles from Pneumocystis carinii-infected rats impair fungal viability but are dispensable for macrophage functions. Microbiol Spectr, 2024, 12(2): e0365323. DOI:10.1128/spectrum.03653-23
    9. Suanno C, Tonoli E, Fornari E, et al. Small extracellular vesicles released from germinated kiwi pollen (pollensomes) present characteristics similar to mammalian exosomes and carry a plant homolog of ALIX. Front Plant Sci, 2023, 14: 1090026. DOI:10.3389/fpls.2023.1090026
    10. Zhang K, Li YJ, Peng LJ, et al. M2 macrophage-derived exosomal miR-193b-3p promotes progression and glutamine uptake of pancreatic cancer by targeting TRIM62. Biol Direct, 2023, 18(1): 1. DOI:10.1186/s13062-023-00356-y
    11. Fujisaki H, Futaki S. Epithelial-Mesenchymal Transition Induced in Cancer Cells by Adhesion to Type I Collagen. Int J Mol Sci, 2022, 24(1): 198. DOI:10.3390/ijms24010198
    12. Zhang Y, Jiao Z, Chen M, et al. Roles of Non-Coding RNAs in Primary Biliary Cholangitis. Front Mol Biosci, 2022, 9: 915993. DOI:10.3389/fmolb.2022.915993
    13. Wu HJ, Chu PY. Current and Developing Liquid Biopsy Techniques for Breast Cancer. Cancers (Basel), 2022, 14(9): 2052. DOI:10.3390/cancers14092052
    14. Thakur A, Johnson A, Jacobs E, et al. Energy Sources for Exosome Communication in a Cancer Microenvironment. Cancers (Basel), 2022, 14(7): 1698. DOI:10.3390/cancers14071698
    15. Gomez N, James V, Onion D, et al. Extracellular vesicles and chronic obstructive pulmonary disease (COPD): a systematic review. Respir Res, 2022, 23(1): 82. DOI:10.1186/s12931-022-01984-0
    16. Fluitt MB, Mohit N, Gambhir KK, et al. To the Future: The Role of Exosome-Derived microRNAs as Markers, Mediators, and Therapies for Endothelial Dysfunction in Type 2 Diabetes Mellitus. J Diabetes Res, 2022, 2022: 5126968. DOI:10.1155/2022/5126968
    17. Huang Y, Liu Q, Liu L, et al. Lipopolysaccharide-Preconditioned Dental Follicle Stem Cells Derived Small Extracellular Vesicles Treating Periodontitis via Reactive Oxygen Species/Mitogen-Activated Protein Kinase Signaling-Mediated Antioxidant Effect. Int J Nanomedicine, 2022, 17: 799-819. DOI:10.2147/IJN.S350869
    18. Lu L, Huang J, Mo J, et al. Exosomal lncRNA TUG1 from cancer-associated fibroblasts promotes liver cancer cell migration, invasion, and glycolysis by regulating the miR-524-5p/SIX1 axis. Cell Mol Biol Lett, 2022, 27(1): 17. DOI:10.1186/s11658-022-00309-9
    19. Ye C, Zheng F, Wu N, et al. Extracellular vesicles in vascular remodeling. Acta Pharmacol Sin, 2022, 43(9): 2191-2201. DOI:10.1038/s41401-021-00846-7
    20. Xiong J, Zhang H, Zeng B, et al. An Exploration of Non-Coding RNAs in Extracellular Vesicles Delivered by Swine Anterior Pituitary. Front Genet, 2021, 12: 772753. DOI:10.3389/fgene.2021.772753
    21. Femminò S, D'Ascenzo F, Ravera F, et al. Percutaneous Coronary Intervention (PCI) Reprograms Circulating Extracellular Vesicles from ACS Patients Impairing Their Cardio-Protective Properties. Int J Mol Sci, 2021, 22(19): 10270. DOI:10.3390/ijms221910270
    22. Bondhopadhyay B, Sisodiya S, Alzahrani FA, et al. Exosomes: A Forthcoming Era of Breast Cancer Therapeutics. Cancers (Basel), 2021, 13(18): 4672. DOI:10.3390/cancers13184672
    23. Park S, Bello A, Arai Y, et al. Functional Duality of Chondrocyte Hypertrophy and Biomedical Application Trends in Osteoarthritis. Pharmaceutics, 2021, 13(8): 1139. DOI:10.3390/pharmaceutics13081139
    24. Gebeyehu A, Kommineni N, Meckes DG Jr, et al. Role of Exosomes for Delivery of Chemotherapeutic Drugs. Crit Rev Ther Drug Carrier Syst, 2021, 38(5): 53-97. DOI:10.1615/CritRevTherDrugCarrierSyst.2021036301
    25. Alharbi MG, Lee SH, Abdelazim AM, et al. Role of Extracellular Vesicles in Compromising Cellular Resilience to Environmental Stressors. Biomed Res Int, 2021, 2021: 9912281. DOI:10.1155/2021/9912281
    26. Qin X, Lu M, Li G, et al. Downregulation of tumor-derived exosomal miR-34c induces cancer-associated fibroblast activation to promote cholangiocarcinoma progress. Cancer Cell Int, 2021, 21(1): 373. DOI:10.1186/s12935-020-01726-6
    27. Ullah MS, Zhivonitko VV, Samoylenko A, et al. Identification of extracellular nanoparticle subsets by nuclear magnetic resonance. Chem Sci, 2021, 12(24): 8311-8319. DOI:10.1039/d1sc01402a
    28. Das Gupta A, Krawczynska N, Nelson ER. Extracellular Vesicles-The Next Frontier in Endocrinology. Endocrinology, 2021, 162(9): bqab133. DOI:10.1210/endocr/bqab133
    29. Ural EE, Toomajian V, Hoque Apu E, et al. Visualizing Extracellular Vesicles and Their Function in 3D Tumor Microenvironment Models. Int J Mol Sci, 2021, 22(9): 4784. DOI:10.3390/ijms22094784
    30. Piombino C, Mastrolia I, Omarini C, et al. The Role of Exosomes in Breast Cancer Diagnosis. Biomedicines, 2021, 9(3): 312. DOI:10.3390/biomedicines9030312
    31. Srivastava A, Rathore S, Munshi A, et al. Extracellular Vesicles in Oncology: from Immune Suppression to Immunotherapy. AAPS J, 2021, 23(2): 30. DOI:10.1208/s12248-021-00554-4
    32. Dave KM, Zhao W, Hoover C, et al. Extracellular Vesicles Derived from a Human Brain Endothelial Cell Line Increase Cellular ATP Levels. AAPS PharmSciTech, 2021, 22(1): 18. DOI:10.1208/s12249-020-01892-w
    33. Cheng X, Li W, Zhao R, et al. The role of hippocampal niche exosomes in rat hippocampal neurogenesis after fimbria-fornix transection. J Biol Chem, 2021, 296: 100188. DOI:10.1074/jbc.RA120.015561
    34. Wang J, Liu Y, Li Y, et al. Exosomal‑miR‑10a derived from colorectal cancer cells suppresses migration of human lung fibroblasts, and expression of IL‑6, IL‑8 and IL‑1β. Mol Med Rep, 2021, 23(1): 84. DOI:10.3892/mmr.2020.11723
    35. Penna C, Femminò S, Tapparo M, et al. The Inflammatory Cytokine IL-3 Hampers Cardioprotection Mediated by Endothelial Cell-Derived Extracellular Vesicles Possibly via Their Protein Cargo. Cells, 2020, 10(1): 13. DOI:10.3390/cells10010013
    36. Tanasi I, Adamo A, Kamga PT, et al. High-throughput analysis and functional interpretation of extracellular vesicle content in hematological malignancies. Comput Struct Biotechnol J, 2020, 18: 2670-2677. DOI:10.1016/j.csbj.2020.09.027
    37. Drexel R, Siupa A, Carnell-Morris P, et al. Fast and Purification-Free Characterization of Bio-Nanoparticles in Biological Media by Electrical Asymmetrical Flow Field-Flow Fractionation Hyphenated with Multi-Angle Light Scattering and Nanoparticle Tracking Analysis Detection. Molecules, 2020, 25(20): 4703. DOI:10.3390/molecules25204703
    38. Rios-Colon L, Arthur E, Niture S, et al. The Role of Exosomes in the Crosstalk between Adipocytes and Liver Cancer Cells. Cells, 2020, 9(9): 1988. DOI:10.3390/cells9091988
    39. Aramini B, Masciale V, Haider KH. Defining lung cancer stem cells exosomal payload of miRNAs in clinical perspective. World J Stem Cells, 2020, 12(6): 406-421. DOI:10.4252/wjsc.v12.i6.406
    40. Seok J, Park H, Choi JH, et al. Placenta-Derived Mesenchymal Stem Cells Restore the Ovary Function in an Ovariectomized Rat Model via an Antioxidant Effect. Antioxidants (Basel), 2020, 9(7): 591. DOI:10.3390/antiox9070591
    41. Cai X, Qu L, Yang J, et al. Exosome-transmitted microRNA-133b inhibited bladder cancer proliferation by upregulating dual-specificity protein phosphatase 1. Cancer Med, 2020, 9(16): 6009-6019. DOI:10.1002/cam4.3263
    42. Sucharov CC. Paracrine Factors in Uremic Cardiomyopathy. JACC Basic Transl Sci, 2020, 5(2): 167-168. DOI:10.1016/j.jacbts.2020.01.005
    43. Mu W, Provaznik J, Hackert T, et al. Tspan8-Tumor Extracellular Vesicle-Induced Endothelial Cell and Fibroblast Remodeling Relies on the Target Cell-Selective Response. Cells, 2020, 9(2): 319. DOI:10.3390/cells9020319
    44. Bowers EC, Hassanin AAI, Ramos KS. In vitro models of exosome biology and toxicology: New frontiers in biomedical research. Toxicol In Vitro, 2020, 64: 104462. DOI:10.1016/j.tiv.2019.02.016
    45. Mu W, Wang Z, Zöller M. Ping-Pong-Tumor and Host in Pancreatic Cancer Progression. Front Oncol, 2019, 9: 1359. DOI:10.3389/fonc.2019.01359
    46. Li Y, Zhu X, Zhang M, et al. Heatstroke-induced hepatocyte exosomes promote liver injury by activating the NOD-like receptor signaling pathway in mice. PeerJ, 2019, 7: e8216. DOI:10.7717/peerj.8216
    47. Ren XS, Tong Y, Qiu Y, et al. MiR155-5p in adventitial fibroblasts-derived extracellular vesicles inhibits vascular smooth muscle cell proliferation via suppressing angiotensin-converting enzyme expression. J Extracell Vesicles, 2019, 9(1): 1698795. DOI:10.1080/20013078.2019.1698795
    48. Wang X, Qian C, Yang Y, et al. Phosphorylated Rasal2 facilitates breast cancer progression. EBioMedicine, 2019, 50: 144-155. DOI:10.1016/j.ebiom.2019.11.019
    49. Harmati M, Gyukity-Sebestyen E, Dobra G, et al. Small extracellular vesicles convey the stress-induced adaptive responses of melanoma cells. Sci Rep, 2019, 9(1): 15329. DOI:10.1038/s41598-019-51778-6
    50. Tavakoli Dargani Z, Singla DK. Embryonic stem cell-derived exosomes inhibit doxorubicin-induced TLR4-NLRP3-mediated cell death-pyroptosis. Am J Physiol Heart Circ Physiol, 2019, 317(2): H460-H471. DOI:10.1152/ajpheart.00056.2019
    51. Meng Y, Sun J, Wang X, et al. Exosomes: A Promising Avenue for the Diagnosis of Breast Cancer. Technol Cancer Res Treat, 2019, 18: 1533033818821421. DOI:10.1177/1533033818821421
    52. Badawy AA, El-Magd MA, AlSadrah SA. Therapeutic Effect of Camel Milk and Its Exosomes on MCF7 Cells In Vitro and In Vivo. Integr Cancer Ther, 2018, 17(4): 1235-1246. DOI:10.1177/1534735418786000
    53. Sanz-Rubio D, Martin-Burriel I, Gil A, et al. Stability of Circulating Exosomal miRNAs in Healthy Subjects. Sci Rep, 2018, 8(1): 10306. DOI:10.1038/s41598-018-28748-5
    54. Zöller M, Zhao K, Kutlu N, et al. Immunoregulatory Effects of Myeloid-Derived Suppressor Cell Exosomes in Mouse Model of Autoimmune Alopecia Areata. Front Immunol, 2018, 9: 1279. DOI:10.3389/fimmu.2018.01279
    55. Chen J, Chopp M. Exosome Therapy for Stroke. Stroke, 2018, 49(5): 1083-1090. DOI:10.1161/STROKEAHA.117.018292
    56. Gai C, Camussi F, Broccoletti R, et al. Salivary extracellular vesicle-associated miRNAs as potential biomarkers in oral squamous cell carcinoma. BMC Cancer, 2018, 18(1): 439. DOI:10.1186/s12885-018-4364-z
    57. Ludwig N, Whiteside TL. Potential roles of tumor-derived exosomes in angiogenesis. Expert Opin Ther Targets, 2018, 22(5): 409-417. DOI:10.1080/14728222.2018.1464141
    58. Sun W, Luo JD, Jiang H, et al. Tumor exosomes: a double-edged sword in cancer therapy. Acta Pharmacol Sin, 2018, 39(4): 534-541. DOI:10.1038/aps.2018.17
    59. Li X, Liu R, Huang Z, et al. Cholangiocyte-derived exosomal long noncoding RNA H19 promotes cholestatic liver injury in mouse and humans. Hepatology, 2018, 68(2): 599-615. DOI:10.1002/hep.29838
    60. Atay S, Wilkey DW, Milhem M, et al. Insights into the Proteome of Gastrointestinal Stromal Tumors-Derived Exosomes Reveals New Potential Diagnostic Biomarkers. Mol Cell Proteomics, 2018, 17(3): 495-515. DOI:10.1074/mcp.RA117.000267
    61. DeLeo AM, Ikezu T. Extracellular Vesicle Biology in Alzheimer's Disease and Related Tauopathy. J Neuroimmune Pharmacol, 2018, 13(3): 292-308. DOI:10.1007/s11481-017-9768-z
    62. Daughton CG. Monitoring wastewater for assessing community health: Sewage Chemical-Information Mining (SCIM). Sci Total Environ, 2018, 619-620: 748-764. DOI:10.1016/j.scitotenv.2017.11.102
    63. Kaessmeyer S, Sehl J, Khiao In M, et al. Subcellular Interactions during Vascular Morphogenesis in 3D Cocultures between Endothelial Cells and Fibroblasts. Int J Mol Sci, 2017, 18(12): 2590. DOI:10.3390/ijms18122590
    64. Yang F, Ning Z, Ma L, et al. Exosomal miRNAs and miRNA dysregulation in cancer-associated fibroblasts. Mol Cancer, 2017, 16(1): 148. DOI:10.1186/s12943-017-0718-4
    65. Caivano A, La Rocca F, Laurenzana I, et al. Extracellular Vesicles in Hematological Malignancies: From Biology to Therapy. Int J Mol Sci, 2017, 18(6): 1183. DOI:10.3390/ijms18061183

    Other cited types(0)

Catalog

    Article Metrics

    Article views (3801) PDF downloads (405) Cited by(65)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return