4.6

CiteScore

2.2

Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Qingqing Li, Long Xiao, Jianwei Zhang, Jin Fan, Wei Zhou, Guoyong Yin, Yongxin Ren. The impact of endplate fracture on postoperative vertebral height loss and kyphotic deformity during treatment of osteoporotic vertebral compression fractures with balloon kyphoplasty[J]. The Journal of Biomedical Research, 2016, 30(5): 419-426. DOI: 10.7555/JBR.30.20150071
Citation: Qingqing Li, Long Xiao, Jianwei Zhang, Jin Fan, Wei Zhou, Guoyong Yin, Yongxin Ren. The impact of endplate fracture on postoperative vertebral height loss and kyphotic deformity during treatment of osteoporotic vertebral compression fractures with balloon kyphoplasty[J]. The Journal of Biomedical Research, 2016, 30(5): 419-426. DOI: 10.7555/JBR.30.20150071

The impact of endplate fracture on postoperative vertebral height loss and kyphotic deformity during treatment of osteoporotic vertebral compression fractures with balloon kyphoplasty

Funds: 

National Natural and Science Foundation (81271988),Jiangsu Natural and Science Foundation(BK2012876)

More Information
  • Received Date: March 04, 2015
  • Revised Date: June 14, 2015
  • This retrospective study investigated the impact of endplate fracture on postoperative vertebral height loss and kyphotic deformity in 144 patients with osteoporotic vertebral compression fracture (OVCF), who received balloon kyphoplasty. Patients were divided into four groups: Group 1 had no superior endplate fracture, Group 2 had frac-tures on the anterior portion of the superior endplate, Group 3 had fractures on the posterior portion of the superior endplate, and Group 4 had complete superior endplate fractures. Anterior and middle vertebral body height, vertebral compression ratio, vertebral height loss rate, and kyphosis Cobb angle of each patient were measured and visual analogue scale (VAS) and Oswestry disability index (ODI) scores were recorded. The anterior vertebral height and kyphosis deformity of all groups significantly improved after the surgery, whereas substantial anterior vertebral height loss and increased Cobb angle were observed in all patients at the last follow-up. Although the vertebral height loss rate and the Cobb angle in Group 2, 3 and 4 were larger compared with Group 1 at the last follow-up, only the vertebral height loss rate in Group 4 and the increase in the Cobb angle in Group 2 and 4 were statistically different from those in Group 1. The VAS and ODI scores in all groups measured after the surgery and at the last follow-up were significantly lower compared with preoperative scores, but there was no significant difference among these groups. Balloon kyphoplasty significantly improved vertebral fracture height and kyphosis. Vertebral height loss and increased kyphotic deformity were observed in OVCF patients with endplate fractures after the surgery. Postoperative aggravation of kyphosis was observed in Group 2. Furthermore, severe vertebral height loss and increased kyphotic deformity were confirmed in Group 4 after the surgery. Our results suggested that postoperative vertebral height loss and aggravation of kyphosis may be associated with biomechanical changes in the vertebral body caused by endplate fracture. Therefore, surgery should not only restore compressed vertebral body height and correct kyphosis, but also correct the deformity of endplate to achieve an effective treatment of OVCF patients with endplate fracture.
  • Related Articles

    [1]Izzatullo Ziyoyiddin o`g`li Abdullaev, Ulugbek Gapparjanovich Gayibov, Sirojiddin Zoirovich Omonturdiev, Sobirova Fotima Azamjonovna, Sabina Narimanovna Gayibova, Takhir Fatikhovich Aripov. Molecular pathways in cardiovascular disease under hypoxia: Mechanisms, biomarkers, and therapeutic targets[J]. The Journal of Biomedical Research. DOI: 10.7555/JBR.38.20240387
    [2]Tiwari-Heckler Shilpa, Jiang Z. Gordon, Popov Yury, J. Mukamal Kenneth. Daily high-dose aspirin does not lower APRI in the Aspirin-Myocardial Infarction Study[J]. The Journal of Biomedical Research, 2020, 34(2): 139-142. DOI: 10.7555/JBR.33.20190041
    [3]Tao Chun'ai, Gan Yongxin, Su Weidong, Li Zhutian, Tang Xiaolan. Effectiveness of hospital disinfection and experience learnt from 11 years of surveillance[J]. The Journal of Biomedical Research, 2019, 33(6): 408-413. DOI: 10.7555/JBR.33.20180118
    [4]Huan Liu, Shijiang Zhang, Yongfeng Shao, Xiaohu Lu, Weidong Gu, Buqing Ni, Qun Gu, Junjie Du. Biomechanical characterization of a novel ring connector for sutureless aortic anastomosis[J]. The Journal of Biomedical Research, 2018, 32(6): 454-460. DOI: 10.7555/JBR.31.20170011
    [5]Minbo Zang, Qiao Zhou, Yunfei Zhu, Mingxi Liu, Zuomin Zhou. Effects of chemotherapeutic agent bendamustine for nonhodgkin lymphoma on spermatogenesis in mice[J]. The Journal of Biomedical Research, 2018, 32(6): 442-453. DOI: 10.7555/JBR.31.20170023
    [6]Kaibo Lin, Shikun Zhang, Jieli Chen, Ding Yang, Mengyi Zhu, Eugene Yujun Xu. Generation and functional characterization of a conditional Pumilio2 null allele[J]. The Journal of Biomedical Research, 2018, 32(6): 434-441. DOI: 10.7555/JBR.32.20170117
    [7]Huanqiang Wang, Congying Yang, Siyuan Wang, Tian Wang, Jingling Han, Kai Wei, Fucun Liu, Jida Xu, Xianzhen Peng, Jianming Wang. Cell-free plasma hypermethylated CASZ1, CDH13 and ING2 are promising biomarkers of esophageal cancer[J]. The Journal of Biomedical Research, 2018, 32(6): 424-433. DOI: 10.7555/JBR.32.20170065
    [8]Fengzhen Wang, Mingwan Zhang, Dongsheng Zhang, Yuan Huang, Li Chen, Sunmin Jiang, Kun Shi, Rui Li. Preparation, optimization, and characterization of chitosancoated solid lipid nanoparticles for ocular drug delivery[J]. The Journal of Biomedical Research, 2018, 32(6): 411-423. DOI: 10.7555/JBR.32.20160170
    [9]Christopher J. Danford, Zemin Yao, Z. Gordon Jiang. Non-alcoholic fatty liver disease: a narrative review of genetics[J]. The Journal of Biomedical Research, 2018, 32(6): 389-400. DOI: 10.7555/JBR.32.20180045
    [10]Sundeep?S.?Tumber, Hong?Liu. Epidural abscess after multiple lumbar punctures for labour epidural catheter placement[J]. The Journal of Biomedical Research, 2010, 24(4): 332-335. DOI: 10.1016/S1674-8301(10)60046-2
  • Cited by

    Periodical cited type(13)

    1. Gowthaman V, Gopalakrishnamurthy TR, Alagesan A, et al. Molecular epidemiological studies of Leucocytozoon caulleryi in commercial layer flocks in Southern peninsular India reveal the presence of new subclusters. J Parasit Dis, 2024, 48(4): 802-809. DOI:10.1007/s12639-024-01705-y
    2. Elshahawy IS, Mohammed ES, Mawas AS, et al. First microscopic, pathological, epidemiological, and molecular investigation of Leucocytozoon (Apicomplexa: Haemosporida) parasites in Egyptian pigeons. Front Vet Sci, 2024, 11: 1434627. DOI:10.3389/fvets.2024.1434627
    3. Agbemelo-Tsomafo C, Adjei S, Kusi KA, et al. Prevalence of Leucocytozoon infection in domestic birds in Ghana. PLoS One, 2023, 18(11): e0294066. DOI:10.1371/journal.pone.0294066
    4. González-Olvera M, Hernandez-Colina A, Chantrey J, et al. A non-invasive feather-based methodology for the detection of blood parasites (Haemosporida). Sci Rep, 2023, 13(1): 16712. DOI:10.1038/s41598-023-43932-y
    5. Boonchuay K, Thomrongsuwannakij T, Chagas CRF, et al. Prevalence and Diversity of Blood Parasites (Plasmodium, Leucocytozoon and Trypanosoma) in Backyard Chickens (Gallus gallus domesticus) Raised in Southern Thailand. Animals (Basel), 2023, 13(17): 2798. DOI:10.3390/ani13172798
    6. Tembe D, Malatji MP, Mukaratirwa S. Occurrence, Prevalence, and Distribution of Haemoparasites of Poultry in Sub-Saharan Africa: A Scoping Review. Pathogens, 2023, 12(7): 945. DOI:10.3390/pathogens12070945
    7. Valkiūnas G, Iezhova TA. Insights into the Biology of Leucocytozoon Species (Haemosporida, Leucocytozoidae): Why Is There Slow Research Progress on Agents of Leucocytozoonosis?. Microorganisms, 2023, 11(5): 1251. DOI:10.3390/microorganisms11051251
    8. Li Z, Ren XX, Zhao YJ, et al. First report of haemosporidia and associated risk factors in red junglefowl (Gallus gallus) in China. Parasit Vectors, 2022, 15(1): 275. DOI:10.1186/s13071-022-05389-2
    9. El-Azm KIA, Hamed MF, Matter A, et al. Molecular and pathological characterization of natural co-infection of poultry farms with the recently emerged Leucocytozoon caulleryi and chicken anemia virus in Egypt. Trop Anim Health Prod, 2022, 54(2): 91. DOI:10.1007/s11250-022-03097-8
    10. Pohuang T, Jittimanee S, Junnu S. Pathology and molecular characterization of Leucocytozoon caulleryi from backyard chickens in Khon Kaen Province, Thailand. Vet World, 2021, 14(10): 2634-2639. DOI:10.14202/vetworld.2021.2634-2639
    11. Khumpim P, Chawengkirttikul R, Junsiri W, et al. Molecular detection and genetic diversity of Leucocytozoon sabrazesi in chickens in Thailand. Sci Rep, 2021, 11(1): 16686. DOI:10.1038/s41598-021-96241-7
    12. Piratae S, Vaisusuk K, Chatan W. Prevalence and molecular identification of Leucocytozoon spp. in fighting cocks (Gallus gallus) in Thailand. Parasitol Res, 2021, 120(6): 2149-2155. DOI:10.1007/s00436-021-07131-w
    13. Valkiūnas G, Iezhova TA. Exo-erythrocytic development of avian malaria and related haemosporidian parasites. Malar J, 2017, 16(1): 101. DOI:10.1186/s12936-017-1746-7

    Other cited types(0)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return