1. |
Yang CH, Ho YH, Tang HY, et al. NMR-Based Analysis of Plasma Lipoprotein Subclass and Lipid Composition Demonstrate the Different Dietary Effects in ApoE-Deficient Mice. Molecules, 2024, 29(5): 988.
DOI:10.3390/molecules29050988
|
2. |
Whitehead AJ, Atcha H, Hocker JD, et al. AP-1 signaling modulates cardiac fibroblast stress responses. J Cell Sci, 2023, 136(23): jcs261152.
DOI:10.1242/jcs.261152
|
3. |
Tang MM, Zhao ST, Li RQ, et al. Therapeutic mechanisms of ginseng in coronary heart disease. Front Pharmacol, 2023, 14: 1271029.
DOI:10.3389/fphar.2023.1271029
|
4. |
Yang Y, Feng K, Yuan L, et al. Compound Danshen Dripping Pill inhibits hypercholesterolemia/atherosclerosis-induced heart failure in ApoE and LDLR dual deficient mice via multiple mechanisms. Acta Pharm Sin B, 2023, 13(3): 1036-1052.
DOI:10.1016/j.apsb.2022.11.012
|
5. |
Puteri MU, Azmi NU, Ridwan S, et al. Recent Update on PCSK9 and Platelet Activation Experimental Research Methods: In Vitro and In Vivo Studies. J Cardiovasc Dev Dis, 2022, 9(8): 258.
DOI:10.3390/jcdd9080258
|
6. |
Bai J, Lin QY, An X, et al. Low-Dose Gallic Acid Administration Does Not Improve Diet-Induced Metabolic Disorders and Atherosclerosis in Apoe Knockout Mice. J Immunol Res, 2022, 2022: 7909971.
DOI:10.1155/2022/7909971
|
7. |
Liao J, Bai J, An X, et al. Lipoprotein Glomerulopathy-Like Lesions in Atherosclerotic Mice Defected With HDL Receptor SR-B1. Front Cardiovasc Med, 2021, 8: 734824.
DOI:10.3389/fcvm.2021.734824
|
8. |
Cernica D, Benedek I, Polexa S, et al. 3D Printing-A Cutting Edge Technology for Treating Post-Infarction Patients. Life (Basel), 2021, 11(9): 910.
DOI:10.3390/life11090910
|
9. |
Cui H, Liu C, Esworthy T, et al. 4D physiologically adaptable cardiac patch: A 4-month in vivo study for the treatment of myocardial infarction. Sci Adv, 2020, 6(26): eabb5067.
DOI:10.1126/sciadv.abb5067
|
10. |
Colbert CM, Shao J, Hollowed JJ, et al. 3D-Printed Coronary Implants Are Effective for Percutaneous Creation of Swine Models with Focal Coronary Stenosis. J Cardiovasc Transl Res, 2020, 13(6): 1033-1043.
DOI:10.1007/s12265-020-10018-3
|
11. |
Hollowed JJ, Colbert CM, Currier JW, et al. Novel Percutaneous Approach for Deployment of 3D Printed Coronary Stenosis Implants in Swine Models of Ischemic Heart Disease. J Vis Exp, 2020.
DOI:10.3791/60729
|
12. |
Bikou O, Tharakan S, Yamada KP, et al. A Novel Large Animal Model of Thrombogenic Coronary Microembolization. Front Cardiovasc Med, 2019, 6: 157.
DOI:10.3389/fcvm.2019.00157
|
13. |
Gwon SY, Lee HM, Rhee KJ, et al. Microarray and proteome array in an atherosclerosis mouse model for identification of biomarkers in whole blood. Int J Med Sci, 2019, 16(6): 882-892.
DOI:10.7150/ijms.30082
|
14. |
Liu H, Xiong W, Liu F, et al. Significant role and mechanism of microRNA-143-3p/KLLN axis in the development of coronary heart disease. Am J Transl Res, 2019, 11(6): 3610-3619.
|
15. |
Savoji H, Mohammadi MH, Rafatian N, et al. Cardiovascular disease models: A game changing paradigm in drug discovery and screening. Biomaterials, 2019, 198: 3-26.
DOI:10.1016/j.biomaterials.2018.09.036
|
16. |
Gold K, Gaharwar AK, Jain A. Emerging trends in multiscale modeling of vascular pathophysiology: Organ-on-a-chip and 3D printing. Biomaterials, 2019, 196: 2-17.
DOI:10.1016/j.biomaterials.2018.07.029
|
17. |
Soler A, Hunter I, Joseph G, et al. Elevated 20-HETE in metabolic syndrome regulates arterial stiffness and systolic hypertension via MMP12 activation. J Mol Cell Cardiol, 2018, 117: 88-99.
DOI:10.1016/j.yjmcc.2018.02.005
|
18. |
Gao M, Xin G, Qiu X, et al. Establishment of a rat model with diet-induced coronary atherosclerosis. J Biomed Res, 2016, 31(1): 47-55.
DOI:10.7555/JBR.31.20160020
|