Citation: | Anastasia V. Poznyak, Alexey Aleksandrovich Yakovlev, Mikhail А. Popov, Alexander D. Zhuravlev, Vasily N. Sukhorukov, Alexander N. Orekhov. Coronary atherosclerotic plaque regression strategies[J]. The Journal of Biomedical Research. DOI: 10.7555/JBR.37.20230223 |
Unproofed Manuscript: The manuscript has been professionally copyedited and typeset to confirm the JBR’s formatting, but still needs proofreading by the corresponding author to ensure accuracy and correct any potential errors introduced during the editing process. It will be replaced by the online publication version.
Atherosclerosis poses a significant and widespread problem at the population level. Consequently, there is a pressing need to develop effective methods to reduce the risk associated with this condition, which holds a prominent position in cardiology research. The primary manifestation of atherosclerosis involves plaque formation on the walls of coronary arteries. These plaques not only disrupt blood flow but also raise the likelihood of thrombosis and subsequent cardiovascular events. Unfortunately, atherosclerosis itself is usually asymptomatic, resulting in challenges with diagnosis and a delayed initiation of treatment. Hence, strategies focusing on the regression of existing plaques within blood vessels play a crucial role. Our review encompasses comprehensive data on the regression of coronary atherosclerotic plaques, examining both the underlying mechanisms and a range of regression strategies, encompassing lifestyle modifications to medical interventions.
None.
This research was funded by Russian Science Foundation, grant number 23-25-00339.
CLC number: R543, Document code: A
The authors reported no conflict of interests.
[1] |
Theofilis P, Oikonomou E, Chasikidis C, et al. Inflammasomes in atherosclerosis-from pathophysiology to treatment[J]. Pharmaceuticals (Basel), 2023, 16(9): 1211. doi: 10.3390/ph16091211
|
[2] |
Mehu M, Narasimhulu CA, Singla DK. Inflammatory cells in atherosclerosis[J]. Antioxidants (Basel), 2022, 11(2): 233. doi: 10.3390/antiox11020233
|
[3] |
Shahjehan RD, Bhutta BS. Coronary artery disease[M]. Treasure Island (FL): StatPearls Publishing, 2023.
|
[4] |
Dave T, Ezhilan J, Vasnawala H, et al. Plaque regression and plaque stabilisation in cardiovascular diseases[J]. Indian J Endocrinol Metab, 2013, 17(6): 983–989. doi: 10.4103/2230-8210.122604
|
[5] |
Feig JE. Regression of atherosclerosis: insights from animal and clinical studies[J]. Ann Glob Health, 2014, 80(1): 13–23. doi: 10.1016/j.aogh.2013.12.001
|
[6] |
Katra P, Björkbacka H. Atherosclerosis: cell biology and lipoproteins[J]. Curr Opin Lipidol, 2022, 33(3): 208–210. doi: 10.1097/MOL.0000000000000815
|
[7] |
Borén J, Chapman MJ, Krauss RM, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel[J]. Eur Heart J, 2020, 41(24): 2313–2330. doi: 10.1093/eurheartj/ehz962
|
[8] |
Gerhardt T, Haghikia A, Stapmanns P, et al. Immune mechanisms of plaque instability[J]. Front Cardiovasc Med, 2022, 8: 797046. doi: 10.3389/fcvm.2021.797046
|
[9] |
Li Y, Deng S, Liu B, et al. The effects of lipid-lowering therapy on coronary plaque regression: a systematic review and meta-analysis[J]. Sci Rep, 2021, 11(1): 7999. doi: 10.1038/s41598-021-87528-w
|
[10] |
Rocha VZ, Rached FH, Miname MH. Insights into the role of inflammation in the management of atherosclerosis[J]. J Inflamm Res, 2023, 16: 2223–2239. doi: 10.2147/JIR.S276982
|
[11] |
Silva GM, França-Falcão MS, Calzerra NTM, et al. Role of renin-angiotensin system components in atherosclerosis: focus on Ang-II, ACE2, and Ang-1–7[J]. Front Physiol, 2020, 11: 1067. doi: 10.3389/fphys.2020.01067
|
[12] |
Waring OJ, Skenteris NT, Biessen EAL, et al. Two-faced Janus: the dual role of macrophages in atherosclerotic calcification[J]. Cardiovasc Res, 2022, 118(13): 2768–2777. doi: 10.1093/cvr/cvab301
|
[13] |
Kowara M, Cudnoch-Jedrzejewska A. Different approaches in therapy aiming to stabilize an unstable atherosclerotic plaque[J]. Int J Mol Sci, 2021, 22(9): 4354. doi: 10.3390/ijms22094354
|
[14] |
Li Y, Luo X, Hua Z, et al. Apolipoproteins as potential communicators play an essential role in the pathogenesis and treatment of early atherosclerosis[J]. Int J Biol Sci, 2023, 19(14): 4493–4510. doi: 10.7150/ijbs.86475
|
[15] |
Poznyak AV, Silaeva YY, Orekhov AN, et al. Animal models of human atherosclerosis: current progress[J]. Braz J Med Biol Res, 2020, 53(6): e9557. doi: 10.1590/1414-431x20209557
|
[16] |
Harman JL, Jørgensen HF. The role of smooth muscle cells in plaque stability: Therapeutic targeting potential[J]. Br J Pharmacol, 2019, 176(19): 3741–3753. doi: 10.1111/bph.14779
|
[17] |
Phu TA, Ng M, Vu NK, et al. ApoE expression in macrophages communicates immunometabolic signaling that controls hyperlipidemia-driven hematopoiesis & inflammation via extracellular vesicles[J]. J Extracell Vesicles, 2023, 12(8): e12345. doi: 10.1002/jev2.12345
|
[18] |
Zhao R, Liu H, Zhang S, et al. A novel animal model for vulnerable atherosclerotic plaque: dehydrated ethanol lavage in the carotid artery of rabbits fed a Western diet[J]. Cardiovasc Diagn Ther, 2021, 11(6): 1241–1252. doi: 10.21037/cdt-21-291
|
[19] |
Patel S, Mastrogiacomo L, Fulmer M, et al. Deletion of macrophage-specific glycogen synthase kinase (GSK)-3α promotes atherosclerotic regression in Ldlr−/− mice[J]. Int J Mol Sci, 2022, 23(16): 9293. doi: 10.3390/ijms23169293
|
[20] |
Yanai H, Adachi H, Hakoshima M, et al. Atherogenic lipoproteins for the statin residual cardiovascular disease risk[J]. Int J Mol Sci, 2022, 23(21): 13499. doi: 10.3390/ijms232113499
|
[21] |
Rong JX, Li J, Reis ED, et al. Elevating high-density lipoprotein cholesterol in apolipoprotein E-deficient mice remodels advanced atherosclerotic lesions by decreasing macrophage and increasing smooth muscle cell content[J]. Circulation, 2001, 104(20): 2447–2452. doi: 10.1161/hc4501.098952
|
[22] |
Feig JE, Parathath S, Rong JX, et al. Reversal of hyperlipidemia with a genetic switch favorably affects the content and inflammatory state of macrophages in atherosclerotic plaques[J]. Circulation, 2011, 123(9): 989–998. doi: 10.1161/CIRCULATIONAHA.110.984146
|
[23] |
Kawashiri MA, Zhang Y, Usher D, et al. Effects of coexpression of the LDL receptor and apoE on cholesterol metabolism and atherosclerosis in LDL receptor-deficient mice[J]. J Lipid Res, 2001, 42(6): 943–950. doi: 10.1016/S0022-2275(20)31618-7
|
[24] |
Cho KH, Hong YJ. Proprotein convertase subtilisin/kexin type 9 inhibition in cardiovascular disease: current status and future perspectives[J]. Korean J Intern Med, 2020, 35(5): 1045–1058. doi: 10.3904/kjim.2020.140
|
[25] |
Barrett TJ. Macrophages in atherosclerosis regression[J]. Arterioscler Thromb Vasc Biol, 2020, 40(1): 20–33. doi: 10.1161/ATVBAHA.119.312802
|
[26] |
Judd J, Lovas J, Huang GN. Defined factors to reactivate cell cycle activity in adult mouse cardiomyocytes[J]. Sci Rep, 2019, 9(1): 18830. doi: 10.1038/s41598-019-55027-8
|
[27] |
Simo OK, Berrougui H, Fulop T, et al. The susceptibility to diet-induced atherosclerosis is exacerbated with aging in C57B1/6 mice[J]. Biomedicines, 2021, 9(5): 487. doi: 10.3390/biomedicines9050487
|
[28] |
Dominguez LJ, Veronese N, Vernuccio L, et al. Nutrition, physical activity, and other lifestyle factors in the prevention of cognitive decline and dementia[J]. Nutrients, 2021, 13(11): 4080. doi: 10.3390/nu13114080
|
[29] |
Meiring RM, Tanimukai K, Bradnam L. The effect of exercise-based cardiac rehabilitation on objectively measured physical activity and sedentary behavior: a systematic review and meta-analysis[J]. J Prim Care Community Health, 2020, 11: 2150132720935290.
|
[30] |
Geng L, Yuan Y, Du P, et al. The association between intravascular ultrasound-derived echo-attenuation and quantitative flow ratio in intermediate coronary lesions[J]. Cardiovasc Diagn Ther, 2021, 11(6): 1206–1216. doi: 10.21037/cdt-21-402
|
[31] |
De Bosscher R, Dausin C, Claus P, et al. Endurance exercise and the risk of cardiovascular pathology in men: a comparison between lifelong and late-onset endurance training and a non-athletic lifestyle - rationale and design of the Master@Heart study, a prospective cohort trial[J]. BMJ Open Sport Exerc Med, 2021, 7(2): e001048. doi: 10.1136/bmjsem-2021-001048
|
[32] |
Yang S, Zeng Z, Yuan Q, et al. Vascular calcification: from the perspective of crosstalk[J]. Mol Biomed, 2023, 4(1): 35. doi: 10.1186/s43556-023-00146-y
|
[33] |
Ngamdu KS, Ghosalkar DS, Chung HE, et al. Long-term statin therapy is associated with severe coronary artery calcification[J]. PLoS One, 2023, 18(7): e0289111. doi: 10.1371/journal.pone.0289111
|
[34] |
Pulipati VP, Alenghat FJ. The impact of lipid-lowering medications on coronary artery plaque characteristics[J]. Am J Prev Cardiol, 2021, 8: 100294. doi: 10.1016/j.ajpc.2021.100294
|
[35] |
Xian JZ, Lu M, Fong F, et al. Statin effects on vascular calcification: microarchitectural changes in aortic calcium deposits in aged hyperlipidemic mice[J]. Arterioscler Thromb Vasc Biol, 2021, 41(4): e185–e192. doi: 10.1161/ATVBAHA.120.315737
|
[36] |
Sallam T, Tintut Y, Demer LL. Regulation of calcific vascular and valvular disease by nuclear receptors[J]. Curr Opin Lipidol, 2019, 30(5): 357–363. doi: 10.1097/MOL.0000000000000632
|
[37] |
Henzel J, Kępka C, Kruk M, et al. High-risk coronary plaque regression after intensive lifestyle intervention in nonobstructive coronary disease: a randomized study[J]. JACC Cardiovasc Imaging, 2021, 14(6): 1192–1202. doi: 10.1016/j.jcmg.2020.10.019
|
[38] |
Ornish D, Scherwitz LW, Billings JH, et al. Intensive lifestyle changes for reversal of coronary heart disease[J]. JAMA, 1998, 280(23): 2001–2007. doi: 10.1001/jama.280.23.2001
|
[39] |
Wu AD, Lindson N, Hartmann-Boyce J, et al. Smoking cessation for secondary prevention of cardiovascular disease[J]. Cochrane Database Syst Rev, 2022, 8(8): CD014936. https://pubmed.ncbi.nlm.nih.gov/35938889/
|
[40] |
Laguzzi F, Baldassarre D, Veglia F, et al. Alcohol consumption in relation to carotid subclinical atherosclerosis and its progression: results from a European longitudinal multicentre study[J]. Eur J Nutr, 2021, 60(1): 123–134. doi: 10.1007/s00394-020-02220-5
|
[41] |
Hata Y, Mochizuki J, Okamoto S, et al. Aortic calcification is associated with coronary artery calcification and is a potential surrogate marker for ischemic heart disease risk: A cross-sectional study[J]. Medicine (Baltimore), 2022, 101(29): e29875. doi: 10.1097/MD.0000000000029875
|
[42] |
US Preventive Services Task Force, Mangione CM, Barry MJ, et al. Statin use for the primary prevention of cardiovascular disease in adults: US preventive services task force recommendation statement[J]. JAMA, 2022, 328(8): 746–753. doi: 10.1001/jama.2022.13044
|
[43] |
Toth PP, Banach M. Statins: then and now[J]. Methodist Debakey Cardiovasc J, 2019, 15(1): 23–31. doi: 10.14797/mdcj-15-1-23
|
[44] |
Wakabayashi K, Nozue T, Yamamoto S, et al. Efficacy of statin therapy in inducing coronary plaque regression in patients with low baseline cholesterol levels[J]. J Atheroscler Thromb, 2016, 23(9): 1055–1066. doi: 10.5551/jat.34660
|
[45] |
Legutko J, Bryniarski KL, Kaluza GL, et al. Intracoronary imaging of vulnerable plaque-from clinical research to everyday practice[J]. J Clin Med, 2022, 11(22): 6639. doi: 10.3390/jcm11226639
|
[46] |
Daghem M, Bing R, Fayad ZA, et al. Noninvasive imaging to assess atherosclerotic plaque composition and disease activity: coronary and carotid applications[J]. JACC Cardiovasc Imaging, 2020, 13(4): 1055–1068. doi: 10.1016/j.jcmg.2019.03.033
|
[47] |
Araki M, Park SJ, Dauerman HL, et al. Optical coherence tomography in coronary atherosclerosis assessment and intervention[J]. Nat Rev Cardiol, 2022, 19(10): 684–703. doi: 10.1038/s41569-022-00687-9
|
[48] |
Kitahara S, Kataoka Y, Sugane H, et al. In vivo imaging of vulnerable plaque with intravascular modalities: its advantages and limitations[J]. Cardiovasc Diagn Ther, 2020, 10(5): 1461–1479. doi: 10.21037/cdt-20-238
|
[49] |
Nagaraja V, Kalra A, Puri R. When to use intravascular ultrasound or optical coherence tomography during percutaneous coronary intervention?[J]. Cardiovasc Diagn Ther, 2020, 10(5): 1429–1444. doi: 10.21037/cdt-20-206
|
[50] |
Takagi T, Yoshida K, Akasaka T, et al. Intravascular ultrasound analysis of reduction in progression of coronary narrowing by treatment with pravastatin[J]. Am J Cardiol, 1997, 79(12): 1673–1676. doi: 10.1016/S0002-9149(97)00221-X
|
[51] |
Chhatriwalla AK, Nicholls SJ, Nissen SE. The ASTEROID trial: coronary plaque regression with high-dose statin therapy[J]. Future Cardiol, 2006, 2(6): 651–654. doi: 10.2217/14796678.2.6.651
|
[52] |
Adachi T, Ohsuzu F. Cosmic effect of rosuvastatin in COSMOS[J]. Circ J, 2009, 73(11): 2015–2016. doi: 10.1253/circj.CJ-09-0700
|
[53] |
Kovarnik T, Chen Z, Mintz GS, et al. Plaque volume and plaque risk profile in diabetic vs. non-diabetic patients undergoing lipid-lowering therapy: a study based on 3D intravascular ultrasound and virtual histology[J]. Cardiovasc Diabetol, 2017, 16(1): 156. doi: 10.1186/s12933-017-0637-0
|
[54] |
Kazemian P, Wexler DJ, Fields NF, et al. Development and validation of PREDICT-DM: a new microsimulation model to project and evaluate complications and treatments of type 2 diabetes mellitus[J]. Diabetes Technol Ther, 2019, 21(6): 344–355. doi: 10.1089/dia.2018.0393
|
[55] |
Gao D, Hua R, Jiesisibieke D, et al. C-reactive protein and coronary atheroma regression following statin therapy: A meta-regression of randomized controlled trials[J]. Front Cardiovasc Med, 2022, 9: 989527. doi: 10.3389/fcvm.2022.989527
|
[56] |
Nissen SE, Nicholls SJ, Sipahi I, et al. Effect of very high-intensity statin therapy on regression of coronary atherosclerosis: the ASTEROID trial[J]. JAMA, 2006, 295(13): 1556–1565. doi: 10.1001/jama.295.13.jpc60002
|
[57] |
Nissen SE. Effect of intensive lipid lowering on progression of coronary atherosclerosis: evidence for an early benefit from the Reversal of Atherosclerosis with Aggressive Lipid Lowering (REVERSAL) trial[J]. Am J Cardiol, 2005, 96(S5): 61–68. https://www.sciencedirect.com/science/article/abs/pii/S0002914905011379
|
[58] |
Puri R, Ballantyne CM, Hoogeveen RC, et al. Lipoprotein(a) and coronary atheroma progression rates during long-term high-intensity statin therapy: Insights from SATURN[J]. Atherosclerosis, 2017, 263: 137–144. doi: 10.1016/j.atherosclerosis.2017.06.026
|
[59] |
Hibi K, Kimura T, Kimura K, et al. Clinically evident polyvascular disease and regression of coronary atherosclerosis after intensive statin therapy in patients with acute coronary syndrome: serial intravascular ultrasound from the Japanese assessment of pitavastatin and atorvastatin in acute coronary syndrome (JAPAN-ACS) trial[J]. Atherosclerosis, 2011, 219(2): 743–749. doi: 10.1016/j.atherosclerosis.2011.08.024
|
[60] |
Park SJ, Kang SJ, Ahn JM, et al. Effect of statin treatment on modifying plaque composition: a double-blind, randomized study[J]. J Am Coll Cardiol, 2016, 67(15): 1772–1783. doi: 10.1016/j.jacc.2016.02.014
|
[61] |
Gaba P, Gersh BJ, Muller J, et al. Evolving concepts of the vulnerable atherosclerotic plaque and the vulnerable patient: implications for patient care and future research[J]. Nat Rev Cardiol, 2023, 20(3): 181–196. doi: 10.1038/s41569-022-00769-8
|
[62] |
Gu SZ, Costopoulos C, Huang Y, et al. High-intensity statin treatment is associated with reduced plaque structural stress and remodelling of artery geometry and plaque architecture[J]. Eur Heart J Open, 2021, 1(3): oeab039. doi: 10.1093/ehjopen/oeab039
|
[63] |
Dawson LP, Lum M, Nerleker N, et al. Coronary atherosclerotic plaque regression: JACC state-of-the-art review[J]. J Am Coll Cardiol, 2022, 79(1): 66–82. doi: 10.1016/j.jacc.2021.10.035
|
[64] |
Kini AS, Baber U, Kovacic JC, et al. Changes in plaque lipid content after short-term intensive versus standard statin therapy: the YELLOW trial (reduction in yellow plaque by aggressive lipid-lowering therapy)[J]. J Am Coll Cardiol, 2013, 62(1): 21–29. doi: 10.1016/j.jacc.2013.03.058
|
[65] |
Luo H, Lu J, Bai Y, et al. Effect of camrelizumab vs placebo added to chemotherapy on survival and progression-free survival in patients with advanced or metastatic esophageal squamous cell carcinoma: the ESCORT-1st randomized clinical trial[J]. JAMA, 2021, 326(10): 916–925. doi: 10.1001/jama.2021.12836
|
[66] |
Taniwaki M, Radu MD, Garcia-Garcia HM, et al. Long-term safety and feasibility of three-vessel multimodality intravascular imaging in patients with ST-elevation myocardial infarction: the IBIS-4 (integrated biomarker and imaging study) substudy[J]. Int J Cardiovasc Imaging, 2015, 31(5): 915–926. doi: 10.1007/s10554-015-0631-0
|
[67] |
Komukai K, Kubo T, Kitabata H, et al. Effect of atorvastatin therapy on fibrous cap thickness in coronary atherosclerotic plaque as assessed by optical coherence tomography: the EASY-FIT study[J]. J Am Coll Cardiol, 2014, 64(21): 2207–2217. doi: 10.1016/j.jacc.2014.08.045
|
[68] |
Won KB, Lee SE, Lee BK, et al. Longitudinal assessment of coronary plaque volume change related to glycemic status using serial coronary computed tomography angiography: A PARADIGM (Progression of AtheRosclerotic PlAque DetermIned by Computed TomoGraphic Angiography Imaging) substudy[J]. J Cardiovasc Comput Tomogr, 2019, 13(2): 142–147. doi: 10.1016/j.jcct.2018.12.002
|
[69] |
Nakazato R, Gransar H, Berman DS, et al. Statins use and coronary artery plaque composition: results from the International Multicenter CONFIRM Registry[J]. Atherosclerosis, 2012, 225(1): 148–153. doi: 10.1016/j.atherosclerosis.2012.08.002
|
[70] |
Reddy V, Allison J, Mounsey A. Is there benefit to adding ezetimibe to a statin for the secondary prevention of CVD?[J]. J Fam Pract, 2023, 72(5): 227–229. doi: 10.12788/jfp.0610
|
[71] |
Jin J, Shan L, Wang M, et al. Variability in plasma lipids between intensive statin therapy and conventional-dose statins combined with ezetimibe therapy in patients with coronary atherosclerosis disease[J]. Int Heart J, 2023, 64(5): 807–815. doi: 10.1536/ihj.23-125
|
[72] |
Hibi K, Sonoda S, Kawasaki M, et al. Effects of ezetimibe-statin combination therapy on coronary atherosclerosis in acute coronary syndrome[J]. Circ J, 2018, 82(3): 757–766. doi: 10.1253/circj.CJ-17-0598
|
[73] |
Maligłówka M, Kosowski M, Hachuła M, et al. Insight into the evolving role of PCSK9[J]. Metabolites, 2022, 12(3): 256. doi: 10.3390/metabo12030256
|
[74] |
Puri R, Nissen SE, Somaratne R, et al. Impact of PCSK9 inhibition on coronary atheroma progression: Rationale and design of Global Assessment of Plaque Regression with a PCSK9 Antibody as Measured by Intravascular Ultrasound (GLAGOV)[J]. Am Heart J, 2016, 176: 83–92. doi: 10.1016/j.ahj.2016.01.019
|
[75] |
Ako J, Hibi K, Tsujita K, et al. Effect of alirocumab on coronary atheroma volume in japanese patients with acute coronary syndrome- the ODYSSEY J-IVUS trial[J]. Circ J, 2019, 83(10): 2025–2033. doi: 10.1253/circj.CJ-19-0412
|
[76] |
Nurmohamed NS, Ditmarsch M, Kastelein JJP. Cholesteryl ester transfer protein inhibitors: from high-density lipoprotein cholesterol to low-density lipoprotein cholesterol lowering agents?[J]. Cardiovasc Res, 2022, 118(14): 2919–2931. doi: 10.1093/cvr/cvab350
|
[77] |
Su X, Li G, Deng Y, et al. Cholesteryl ester transfer protein inhibitors in precision medicine[J]. Clin Chim Acta, 2020, 510: 733–740. doi: 10.1016/j.cca.2020.09.012
|
[78] |
Sherratt SCR, Libby P, Budoff MJ, et al. Role of omega-3 fatty acids in cardiovascular disease: the debate continues[J]. Curr Atheroscler Rep, 2023, 25(1): 1–17. doi: 10.1007/s11883-022-01075-x
|
[79] |
Baruś P, Modrzewski J, Gumiężna K, et al. Comparative appraisal of intravascular ultrasound and optical coherence tomography in invasive coronary imaging: 2022 update[J]. J Clin Med, 2022, 11(14): 4055. doi: 10.3390/jcm11144055
|
[80] |
Alfaddagh A, Elajami TK, Saleh M, et al. An omega-3 fatty acid plasma index ≥4% prevents progression of coronary artery plaque in patients with coronary artery disease on statin treatment[J]. Atherosclerosis, 2019, 285: 153–162. doi: 10.1016/j.atherosclerosis.2019.04.213
|
[81] |
Budoff MJ, Bhatt DL, Kinninger A, et al. Effect of icosapent ethyl on progression of coronary atherosclerosis in patients with elevated triglycerides on statin therapy: final results of the EVAPORATE trial[J]. Eur Heart J, 2020, 41(40): 3925–3932. doi: 10.1093/eurheartj/ehaa652
|
[82] |
Kaiser Y, Daghem M, Tzolos E, et al. Association of lipoprotein(a) with atherosclerotic plaque progression[J]. J Am Coll Cardiol, 2022, 79(3): 223–233. doi: 10.1016/j.jacc.2021.10.044
|
[83] |
Zivkovic S, Maric G, Cvetinovic N, et al. Anti-inflammatory effects of lipid-lowering drugs and supplements-a narrative review[J]. Nutrients, 2023, 15(6): 1517. doi: 10.3390/nu15061517
|
[84] |
Nissen SE, Tuzcu EM, Libby P, et al. Effect of antihypertensive agents on cardiovascular events in patients with coronary disease and normal blood pressure: the CAMELOT study: a randomized controlled trial[J]. JAMA, 2004, 292(18): 2217–2225. doi: 10.1001/jama.292.18.2217
|
[85] |
Hirohata A, Yamamoto K, Miyoshi T, et al. Impact of olmesartan on progression of coronary atherosclerosis: a serial volumetric intravascular ultrasound analysis from the OLIVUS (impact of OLmesarten on progression of coronary atherosclerosis: evaluation by intravascular ultrasound) trial[J]. J Am Coll Cardiol, 2010, 55(10): 976–982. doi: 10.1016/j.jacc.2009.09.062
|
[86] |
Rodriguez-Granillo GA, Vos J, Bruining N, et al. Long-term effect of perindopril on coronary atherosclerosis progression (from the perindopril's prospective effect on coronary atherosclerosis by angiography and intravascular ultrasound evaluation study)[J]. Am J Cardiol, 2007, 100(2): 159–163. doi: 10.1016/j.amjcard.2007.02.073
|
[87] |
Han C, Wang Q, Meng PP, et al. Effects of intensity of arm training on hemiplegic upper extremity motor recovery in stroke patients: a randomized controlled trial[J]. Clin Rehabil, 2013, 27(1): 75–81. doi: 10.1177/0269215512447223
|
[88] |
Nicholls SJ, Bakris GL, Kastelein JJP, et al. Effect of aliskiren on progression of coronary disease in patients with prehypertension: the AQUARIUS randomized clinical trial[J]. JAMA, 2013, 310(11): 1135–1144. doi: 10.1001/jama.2013.277169
|
[89] |
Zhang FS, He QZ, Qin CH, et al. Therapeutic potential of colchicine in cardiovascular medicine: a pharmacological review[J]. Acta Pharmacol Sin, 2022, 43(9): 2173–2190. doi: 10.1038/s41401-021-00835-w
|
[90] |
Tong DC, Quinn S, Nasis A, et al. Colchicine in patients with acute coronary syndrome: the Australian COPS randomized clinical trial[J]. Circulation, 2020, 142(20): 1890–1900. doi: 10.1161/CIRCULATIONAHA.120.050771
|
[91] |
Lee SR, Choi EK, Park SH, et al. Comparing warfarin and 4 direct oral anticoagulants for the risk of dementia in patients with atrial fibrillation[J]. Stroke, 2021, 52(11): 3459–3468. doi: 10.1161/STROKEAHA.120.033338
|
[92] |
Beyer C, Tokarska L, Stühlinger M, et al. Structural cardiac remodeling in atrial fibrillation[J]. JACC Cardiovasc Imaging, 2021, 14(11): 2199–2208. doi: 10.1016/j.jcmg.2021.04.027
|
[93] |
Andrews RK, Gardiner EE. Monitoring the pulse of thrombus formation: Comment on "Modeling thrombosis in silico: Frontiers, challenges, unresolved problems and milestones" by A. V. Belyaev et al[J]. Phys Life Rev, 2018, 26–27: 113–115.
|
[94] |
Nicholls SJ, Tuzcu EM, Wolski K, et al. Lowering the triglyceride/high-density lipoprotein cholesterol ratio is associated with the beneficial impact of pioglitazone on progression of coronary atherosclerosis in diabetic patients: insights from the PERISCOPE (Pioglitazone Effect on Regression of Intravascular Sonographic Coronary Obstruction Prospective Evaluation) study[J]. J Am Coll Cardiol, 2011, 57(2): 153–159. doi: 10.1016/j.jacc.2010.06.055
|
[95] |
Zeliadt SB, Coggeshall S, Thomas E, et al. The APPROACH trial: Assessing pain, patient-reported outcomes, and complementary and integrative health[J]. Clin Trials, 2020, 17(4): 351–359. doi: 10.1177/1740774520928399
|
[96] |
Chambergo-Michilot D, Tauma-Arrué A, Loli-Guevara S. Effects and safety of SGLT2 inhibitors compared to placebo in patients with heart failure: A systematic review and meta-analysis[J]. Int J Cardiol Heart Vasc, 2020, 32: 100690. https://pubmed.ncbi.nlm.nih.gov/33335975/
|
[97] |
Matsuzaki M, Hiramori K, Imaizumi T, et al. Intravascular ultrasound evaluation of coronary plaque regression by low density lipoprotein-apheresis in familial hypercholesterolemia: the Low Density Lipoprotein-Apheresis Coronary Morphology and Reserve Trial (LACMART)[J]. J Am Coll Cardiol, 2002, 40(2): 220–227. doi: 10.1016/S0735-1097(02)01955-1
|
[98] |
Nissen SE, Tsunoda T, Tuzcu EM, et al. Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial[J]. JAMA, 2003, 290(17): 2292–2300. doi: 10.1001/jama.290.17.2292
|
[99] |
Nissen SE, Nicholls SJ, Wolski K, et al. Effect of rimonabant on progression of atherosclerosis in patients with abdominal obesity and coronary artery disease: the STRADIVARIUS randomized controlled trial[J]. JAMA, 2008, 299(13): 1547–1560. doi: 10.1001/jama.299.13.1547
|
[100] |
Giamarellos-Bourboulis EJ, Tsilika M, Moorlag S, et al. Activate: randomized clinical trial of BCG vaccination against infection in the elderly[J]. Cell, 2020, 183(2): 315–323.e9. doi: 10.1016/j.cell.2020.08.051
|
[101] |
Tardiff BE, Newman MF, Saunders AM, et al. Preliminary report of a genetic basis for cognitive decline after cardiac operations. The Neurologic Outcome Research Group of the Duke Heart Center[J]. Ann Thorac Surg, 1997, 64(3): 715–720. doi: 10.1016/S0003-4975(97)00757-1
|
[102] |
Castellano JM, Pocock SJ, Bhatt DL, et al. Polypill strategy in secondary cardiovascular prevention[J]. N Engl J Med, 2022, 387(11): 967–977. doi: 10.1056/NEJMoa2208275
|
[103] |
Haas NB, Manola J, Dutcher JP, et al. Adjuvant treatment for high-risk clear cell renal cancer: updated results of a high-risk subset of the ASSURE randomized trial[J]. JAMA Oncol, 2017, 3(9): 1249–1252. doi: 10.1001/jamaoncol.2017.0076
|
[104] |
Budoff MJ, Ellenberg SS, Lewis CE, et al. Testosterone treatment and coronary artery plaque volume in older men with low testosterone[J]. JAMA, 2017, 317(7): 708–716. doi: 10.1001/jama.2016.21043
|
[1] | Liting Lv, Xin Hua, Jiaxin Liu, Sutong Zhan, Qianqian Zhang, Xiao Liang, Jian Feng, Yong Song. Anlotinib reverses osimertinib resistance via inhibiting epithelial-to-mesenchymal transition and angiogenesis in non-small cell lung cancer[J]. The Journal of Biomedical Research. DOI: 10.7555/JBR.38.20240045 |
[2] | Sahil Khurana, Ajay Pal Singh, Ashok Kumar, Rajeev Nema. Prognostic value of AKT isoforms in non-small cell lung adenocarcinoma[J]. The Journal of Biomedical Research, 2023, 37(3): 225-228. DOI: 10.7555/JBR.36.20220138 |
[3] | Wang Jing, He Xuezhi, Lu Xiyi, Amin Karim Muhammad, Miao Dengshun, Zhang Erbao. A novel long non-coding RNA NFIA-AS1 is down-regulated in gastric cancer and inhibits proliferation of gastric cancer cells[J]. The Journal of Biomedical Research, 2019, 33(6): 371-381. DOI: 10.7555/JBR.33.20190015 |
[4] | Huanqiang Wang, Congying Yang, Siyuan Wang, Tian Wang, Jingling Han, Kai Wei, Fucun Liu, Jida Xu, Xianzhen Peng, Jianming Wang. Cell-free plasma hypermethylated CASZ1, CDH13 and ING2 are promising biomarkers of esophageal cancer[J]. The Journal of Biomedical Research, 2018, 32(6): 424-433. DOI: 10.7555/JBR.32.20170065 |
[5] | Yong Ji, Mingfeng Zheng, Shugao Ye, Jingyu Chen, Yijiang Chen. PTEN and Ki67 expression is associated with clinicopathologic features of non-small cell lung cancer[J]. The Journal of Biomedical Research, 2014, 28(6): 462-467. DOI: 10.7555/JBR.27.20130084 |
[6] | Keping Xu, Zhi Zhang, Jianqiang Zhao, Jianfeng Huang, Rong Yin, Lin Xu. Partial removal of the pulmonary artery in video-assisted thoracic surgery for non-small cell lung cancer[J]. The Journal of Biomedical Research, 2013, 27(4): 310-317. DOI: 10.7555/JBR.27.20120066 |
[7] | Songyu Cao, Cheng Wang, Xinen Huang, Juncheng Dai, Lingmin Hu, Yao Liu, Jiaping Chen, Hongxia Ma, Guangfu Jin, Zhibin Hu, Lin Xu, Hongbing Shen. Prognostic assessment of apoptotic gene polymorphisms in non-small cell lung cancer in Chinese[J]. The Journal of Biomedical Research, 2013, 27(3): 231-238. DOI: 10.7555/JBR.27.20130014 |
[8] | Wenze Sun, Liping Song, Ting Ai, Yingbing Zhang, Ying Gao, Jie Cui. Prognostic value of MET, cyclin D1 and MET gene copy number in non-small cell lung cancer[J]. The Journal of Biomedical Research, 2013, 27(3): 220-230. DOI: 10.7555/JBR.27.20130004 |
[9] | Li Sun, Xiaoli Fan. Expression of cytochrome P450 2A13 in human non-small cell lung cancer and its clinical significance[J]. The Journal of Biomedical Research, 2013, 27(3): 202-207. DOI: 10.7555/JBR.27.20120019 |
[10] | Qi Zheng, Yu Yao, Kejun Nan. Weekly intravenous nanoparticle albumin-bound paclitaxel for elderly patients with stage IV non-small-cell lung cancer: a series of 20 cases[J]. The Journal of Biomedical Research, 2012, 26(3): 159-164. DOI: 10.7555/JBR.26.20110106 |