1. |
Zhao Z, Zhou Y, Guan J, et al. The relationship between compartment models and their stochastic counterparts: A comparative study with examples of the COVID-19 epidemic modeling. J Biomed Res, 2024, 38(2): 175-188.
DOI:10.7555/JBR.37.20230137
|
2. |
Shuttleworth JG, Lei CL, Whittaker DG, et al. Empirical Quantification of Predictive Uncertainty Due to Model Discrepancy by Training with an Ensemble of Experimental Designs: An Application to Ion Channel Kinetics. Bull Math Biol, 2023, 86(1): 2.
DOI:10.1007/s11538-023-01224-6
|
3. |
Hu C. Emergency Protective Measures and Strategies of COVID-19: From Lifestyle to Traditional Chinese Medicine. Clin Complement Med Pharmacol, 2023, 3(3): 100089.
DOI:10.1016/j.ccmp.2023.100089
|
4. |
Olayiwola MO, Alaje AI, Olarewaju AY, et al. A caputo fractional order epidemic model for evaluating the effectiveness of high-risk quarantine and vaccination strategies on the spread of COVID-19. Healthc Anal (N Y), 2023, 3: 100179.
DOI:10.1016/j.health.2023.100179
|
5. |
Noroozi-Ghaleini E, Shaibani MJ. Investigating the effect of vaccinated population on the COVID-19 prediction using FA and ABC-based feed-forward neural networks. Heliyon, 2023, 9(2): e13672.
DOI:10.1016/j.heliyon.2023.e13672
|
6. |
Bekker R, Uit Het Broek M, Koole G. Modeling COVID-19 hospital admissions and occupancy in the Netherlands. Eur J Oper Res, 2023, 304(1): 207-218.
DOI:10.1016/j.ejor.2021.12.044
|
7. |
Najem S, Monni S, Hatoum R, et al. A framework for reconstructing transmission networks in infectious diseases. Appl Netw Sci, 2022, 7(1): 85.
DOI:10.1007/s41109-022-00525-4
|
8. |
McAndrew T, Codi A, Cambeiro J, et al. Chimeric forecasting: combining probabilistic predictions from computational models and human judgment. BMC Infect Dis, 2022, 22(1): 833.
DOI:10.1186/s12879-022-07794-5
|
9. |
Zhang W, Liu S, Osgood N, et al. Using simulation modelling and systems science to help contain COVID-19: A systematic review. Syst Res Behav Sci, 2022.
DOI:10.1002/sres.2897. Online ahead of print
|
10. |
Nixon K, Jindal S, Parker F, et al. An evaluation of prospective COVID-19 modelling studies in the USA: from data to science translation. Lancet Digit Health, 2022, 4(10): e738-e747.
DOI:10.1016/S2589-7500(22)00148-0
|
11. |
Zhang P, Feng K, Gong Y, et al. Usage of Compartmental Models in Predicting COVID-19 Outbreaks. AAPS J, 2022, 24(5): 98.
DOI:10.1208/s12248-022-00743-9
|
12. |
Guan J, Zhao Y, Wei Y, et al. Transmission dynamics model and the coronavirus disease 2019 epidemic: applications and challenges. Med Rev (2021), 2022, 2(1): 89-109.
DOI:10.1515/mr-2021-0022
|
13. |
Rizzo S, Catanese C, Puligheddu C, et al. CT evaluation of lung infiltrates in the two months preceding the Coronavirus disease 19 pandemic in Canton Ticino (Switzerland): were there suspicious cases before the official first case?. Radiol Med, 2022, 127(4): 360-368.
DOI:10.1007/s11547-022-01466-9
|
14. |
Cocucci TJ, Pulido M, Aparicio JP, et al. Inference in epidemiological agent-based models using ensemble-based data assimilation. PLoS One, 2022, 17(3): e0264892.
DOI:10.1371/journal.pone.0264892
|
15. |
Yu S, Cui S, Rui J, et al. Epidemiological Characteristics and Transmissibility for SARS-CoV-2 of Population Level and Cluster Level in a Chinese City. Front Public Health, 2022, 9: 799536.
DOI:10.3389/fpubh.2021.799536
|
16. |
Wang H, Moore JM, Small M, et al. Epidemic dynamics on higher-dimensional small world networks. Appl Math Comput, 2022, 421: 126911.
DOI:10.1016/j.amc.2021.126911
|
17. |
Wei Y, Sha F, Zhao Y, et al. Better modelling of infectious diseases: lessons from covid-19 in China. BMJ, 2021, 375: n2365.
DOI:10.1136/bmj.n2365
|
18. |
Safari A, Hosseini R, Mazinani M. A novel deep interval type-2 fuzzy LSTM (DIT2FLSTM) model applied to COVID-19 pandemic time-series prediction. J Biomed Inform, 2021, 123: 103920.
DOI:10.1016/j.jbi.2021.103920
|
19. |
Duarte P, Riveros-Perez E. Understanding the cycles of COVID-19 incidence: Principal Component Analysis and interaction of biological and socio-economic factors. Ann Med Surg (Lond), 2021, 66: 102437.
DOI:10.1016/j.amsu.2021.102437
|
20. |
Liu J, Zhou Y, Ye C, et al. The spatial transmission of SARS-CoV-2 in China under the prevention and control measures at the early outbreak. Arch Public Health, 2021, 79(1): 8.
DOI:10.1186/s13690-021-00529-z
|