1. |
Hou W, Guan F, Chen W, et al. Breastfeeding, genetic susceptibility, and the risk of asthma and allergic diseases in children and adolescents: a retrospective national population-based cohort study. BMC Public Health, 2024, 24(1): 3056.
DOI:10.1186/s12889-024-20501-0
|
2. |
Nandi S, Varotariya K, Luhana S, et al. GWAS for identification of genomic regions and candidate genes in vegetable crops. Funct Integr Genomics, 2024, 24(6): 203.
DOI:10.1007/s10142-024-01477-x
|
3. |
Sung HL, Lin WY. Causal effects of cardiovascular health on five epigenetic clocks. Clin Epigenetics, 2024, 16(1): 134.
DOI:10.1186/s13148-024-01752-5
|
4. |
Kang HY, Choe EK. Clinical Strategies in Gene Screening Counseling for the Healthy General Population. Korean J Fam Med, 2024, 45(2): 61-68.
DOI:10.4082/kjfm.23.0254
|
5. |
Lee SB, Choi JE, Hong KW, et al. Genetic Variants Linked to Myocardial Infarction in Individuals with Non-Alcoholic Fatty Liver Disease and Their Potential Interaction with Dietary Patterns. Nutrients, 2024, 16(5): 602.
DOI:10.3390/nu16050602
|
6. |
Zhang S, Jiang Z, Zeng P. Incorporating genetic similarity of auxiliary samples into eGene identification under the transfer learning framework. J Transl Med, 2024, 22(1): 258.
DOI:10.1186/s12967-024-05053-6
|
7. |
Seo H, Park JH, Hwang JT, et al. Epigenetic Profiling of Type 2 Diabetes Mellitus: An Epigenome-Wide Association Study of DNA Methylation in the Korean Genome and Epidemiology Study. Genes (Basel), 2023, 14(12): 2207.
DOI:10.3390/genes14122207
|
8. |
Han J, Zhang L, Yan R, et al. CoNet: Efficient Network Regression for Survival Analysis in Transcriptome-Wide Association Studies-With Applications to Studies of Breast Cancer. Genes (Basel), 2023, 14(3): 586.
DOI:10.3390/genes14030586
|
9. |
Padilla-Martinez F, Szczerbiński Ł, Citko A, et al. Testing the Utility of Polygenic Risk Scores for Type 2 Diabetes and Obesity in Predicting Metabolic Changes in a Prediabetic Population: An Observational Study. Int J Mol Sci, 2022, 23(24): 16081.
DOI:10.3390/ijms232416081
|
10. |
Muneeb M, Feng S, Henschel A. Transfer learning for genotype-phenotype prediction using deep learning models. BMC Bioinformatics, 2022, 23(1): 511.
DOI:10.1186/s12859-022-05036-8
|
11. |
Qiao J, Shao Z, Wu Y, et al. Detecting associated genes for complex traits shared across East Asian and European populations under the framework of composite null hypothesis testing. J Transl Med, 2022, 20(1): 424.
DOI:10.1186/s12967-022-03637-8
|
12. |
Shao Z, Wang T, Qiao J, et al. A comprehensive comparison of multilocus association methods with summary statistics in genome-wide association studies. BMC Bioinformatics, 2022, 23(1): 359.
DOI:10.1186/s12859-022-04897-3
|
13. |
Roh H. A genome-wide association study of the occurrence of genetic variations in Edwardsiella piscicida, Vibrio harveyi, and Streptococcus parauberis under stressed environments. J Fish Dis, 2022, 45(9): 1373-1388.
DOI:10.1111/jfd.13668
|
14. |
Zhang M, Qiao J, Zhang S, et al. Exploring the association between birthweight and breast cancer using summary statistics from a perspective of genetic correlation, mediation, and causality. J Transl Med, 2022, 20(1): 227.
DOI:10.1186/s12967-022-03435-2
|
15. |
Yamamoto A, Shibuya T. More practical differentially private publication of key statistics in GWAS. Bioinform Adv, 2021, 1(1): vbab004.
DOI:10.1093/bioadv/vbab004
|
16. |
Mkize N, Maiwashe A, Dzama K, et al. Suitability of GWAS as a Tool to Discover SNPs Associated with Tick Resistance in Cattle: A Review. Pathogens, 2021, 10(12): 1604.
DOI:10.3390/pathogens10121604
|
17. |
Lu H, Qiao J, Shao Z, et al. A comprehensive gene-centric pleiotropic association analysis for 14 psychiatric disorders with GWAS summary statistics. BMC Med, 2021, 19(1): 314.
DOI:10.1186/s12916-021-02186-z
|
18. |
Monnot S, Desaint H, Mary-Huard T, et al. Deciphering the Genetic Architecture of Plant Virus Resistance by GWAS, State of the Art and Potential Advances. Cells, 2021, 10(11): 3080.
DOI:10.3390/cells10113080
|
19. |
Lu H, Wei Y, Jiang Z, et al. Integrative eQTL-weighted hierarchical Cox models for SNP-set based time-to-event association studies. J Transl Med, 2021, 19(1): 418.
DOI:10.1186/s12967-021-03090-z
|
20. |
Gao Y, Zhang J, Zhao H, et al. Instrumental Heterogeneity in Sex-Specific Two-Sample Mendelian Randomization: Empirical Results From the Relationship Between Anthropometric Traits and Breast/Prostate Cancer. Front Genet, 2021, 12: 651332.
DOI:10.3389/fgene.2021.651332
|
21. |
Petersen KS, Kris-Etherton PM, McCabe GP, et al. Perspective: Planning and Conducting Statistical Analyses for Human Nutrition Randomized Controlled Trials: Ensuring Data Quality and Integrity. Adv Nutr, 2021, 12(5): 1610-1624.
DOI:10.1093/advances/nmab045
|
22. |
Muneeb M, Henschel A. Eye-color and Type-2 diabetes phenotype prediction from genotype data using deep learning methods. BMC Bioinformatics, 2021, 22(1): 198.
DOI:10.1186/s12859-021-04077-9
|
23. |
O'Rielly DD, Rahman P. Genetic Epidemiology of Complex Phenotypes. Methods Mol Biol, 2021, 2249: 335-367.
DOI:10.1007/978-1-0716-1138-8_19
|
24. |
Scossa F, Fernie AR. Ancestral sequence reconstruction - An underused approach to understand the evolution of gene function in plants?. Comput Struct Biotechnol J, 2021, 19: 1579-1594.
DOI:10.1016/j.csbj.2021.03.008
|
25. |
Lu H, Zhang J, Jiang Z, et al. Detection of Genetic Overlap Between Rheumatoid Arthritis and Systemic Lupus Erythematosus Using GWAS Summary Statistics. Front Genet, 2021, 12: 656545.
DOI:10.3389/fgene.2021.656545
|
26. |
McGuire D, Jiang Y, Liu M, et al. Model-based assessment of replicability for genome-wide association meta-analysis. Nat Commun, 2021, 12(1): 1964.
DOI:10.1038/s41467-021-21226-z
|
27. |
Dennis JK, Sealock JM, Straub P, et al. Clinical laboratory test-wide association scan of polygenic scores identifies biomarkers of complex disease. Genome Med, 2021, 13(1): 6.
DOI:10.1186/s13073-020-00820-8
|
28. |
Ramanan VK, Wang X, Przybelski SA, et al. Variants in PPP2R2B and IGF2BP3 are associated with higher tau deposition. Brain Commun, 2020, 2(2): fcaa159.
DOI:10.1093/braincomms/fcaa159
|
29. |
Chen H, Wang T, Yang J, et al. Improved Detection of Potentially Pleiotropic Genes in Coronary Artery Disease and Chronic Kidney Disease Using GWAS Summary Statistics. Front Genet, 2020, 11: 592461.
DOI:10.3389/fgene.2020.592461
|
30. |
Xiao L, Yuan Z, Jin S, et al. Multiple-Tissue Integrative Transcriptome-Wide Association Studies Discovered New Genes Associated With Amyotrophic Lateral Sclerosis. Front Genet, 2020, 11: 587243.
DOI:10.3389/fgene.2020.587243
|
31. |
Jin T, Youn J, Kim AN, et al. Interactions of Habitual Coffee Consumption by Genetic Polymorphisms with the Risk of Prediabetes and Type 2 Diabetes Combined. Nutrients, 2020, 12(8): 2228.
DOI:10.3390/nu12082228
|
32. |
Kuo TT, Jiang X, Tang H, et al. iDASH secure genome analysis competition 2018: blockchain genomic data access logging, homomorphic encryption on GWAS, and DNA segment searching. BMC Med Genomics, 2020, 13(Suppl 7): 98.
DOI:10.1186/s12920-020-0715-0
|
33. |
Padilla-Martínez F, Collin F, Kwasniewski M, et al. Systematic Review of Polygenic Risk Scores for Type 1 and Type 2 Diabetes. Int J Mol Sci, 2020, 21(5): 1703.
DOI:10.3390/ijms21051703
|
34. |
Lan T, Yang B, Zhang X, et al. Statistical Methods and Software for Substance Use and Dependence Genetic Research. Curr Genomics, 2019, 20(3): 172-183.
DOI:10.2174/1389202920666190617094930
|
35. |
Gaudillo J, Rodriguez JJR, Nazareno A, et al. Machine learning approach to single nucleotide polymorphism-based asthma prediction. PLoS One, 2019, 14(12): e0225574.
DOI:10.1371/journal.pone.0225574
|
36. |
Romagnoni A, Jégou S, Van Steen K, et al. Comparative performances of machine learning methods for classifying Crohn Disease patients using genome-wide genotyping data. Sci Rep, 2019, 9(1): 10351.
DOI:10.1038/s41598-019-46649-z
|
37. |
Himmerich H, Bentley J, Kan C, et al. Genetic risk factors for eating disorders: an update and insights into pathophysiology. Ther Adv Psychopharmacol, 2019, 9: 2045125318814734.
DOI:10.1177/2045125318814734
|
38. |
Sanyal N, Lo MT, Kauppi K, et al. GWASinlps: non-local prior based iterative SNP selection tool for genome-wide association studies. Bioinformatics, 2019, 35(1): 1-11.
DOI:10.1093/bioinformatics/bty472
|
39. |
Brinster R, Köttgen A, Tayo BO, et al. Control procedures and estimators of the false discovery rate and their application in low-dimensional settings: an empirical investigation. BMC Bioinformatics, 2018, 19(1): 78.
DOI:10.1186/s12859-018-2081-x
|
40. |
Zeng P, Wang T, Huang S. Cis-SNPs Set Testing and PrediXcan Analysis for Gene Expression Data using Linear Mixed Models. Sci Rep, 2017, 7(1): 15237.
DOI:10.1038/s41598-017-15055-8
|
41. |
Zeng P, Zhou X, Huang S. Prediction of gene expression with cis-SNPs using mixed models and regularization methods. BMC Genomics, 2017, 18(1): 368.
DOI:10.1186/s12864-017-3759-6
|
42. |
Läll K, Mägi R, Morris A, et al. Personalized risk prediction for type 2 diabetes: the potential of genetic risk scores. Genet Med, 2017, 19(3): 322-329.
DOI:10.1038/gim.2016.103
|
43. |
Umehara H, Numata S, Tajima A, et al. Calcium Signaling Pathway Is Associated with the Long-Term Clinical Response to Selective Serotonin Reuptake Inhibitors (SSRI) and SSRI with Antipsychotics in Patients with Obsessive-Compulsive Disorder. PLoS One, 2016, 11(6): e0157232.
DOI:10.1371/journal.pone.0157232
|
44. |
Zhang Q, Zhao Y, Zhang R, et al. A Comparative Study of Five Association Tests Based on CpG Set for Epigenome-Wide Association Studies. PLoS One, 2016, 11(6): e0156895.
DOI:10.1371/journal.pone.0156895
|
45. |
Gasc C, Peyretaillade E, Peyret P. Sequence capture by hybridization to explore modern and ancient genomic diversity in model and nonmodel organisms. Nucleic Acids Res, 2016, 44(10): 4504-18.
DOI:10.1093/nar/gkw309
|