4.6

CiteScore

2.2

Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Ping Zeng, Yang Zhao, Cheng Qian, Liwei Zhang, Ruyang Zhang, Jianwei Gou, Jin Liu, Liya Liu, Feng Chen. Statistical analysis for genome-wide association study[J]. The Journal of Biomedical Research, 2015, 29(4): 285-297. DOI: 10.7555/JBR.29.20140007
Citation: Ping Zeng, Yang Zhao, Cheng Qian, Liwei Zhang, Ruyang Zhang, Jianwei Gou, Jin Liu, Liya Liu, Feng Chen. Statistical analysis for genome-wide association study[J]. The Journal of Biomedical Research, 2015, 29(4): 285-297. DOI: 10.7555/JBR.29.20140007

Statistical analysis for genome-wide association study

Funds: 

National Natural Science Foundation of China (No. 81072389, 81373102, 81473070 and 81402765), Research Found for the Doctoral Program of Higher Education of China (No. 20113234110002), Key Grant of Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 10KJA330034), College Philosophy and Social Science Foundation from Education Department of Jiangsu Province of China (No. 2013SJB790059, 2013SJD790032), Research Foundation from Xuzhou Medical College (No. 2012KJ02), Research and Innovation Project for College Graduates of Jiangsu Province of China (No. CXLX13_574) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

More Information
  • Received Date: January 14, 2014
  • In the past few years, genome-wide association study (GWAS) has made great successes in identifying genetie susceptibility loci underlying many complex diseases and traits. The findings provide important genetic insights into understanding pathogenesis of diseases. In this paper, we present an overview of widely used approaches and strategies for analysis of GWAS, offered a general consideration to deal with GWAS data. The issues regarding data quality control, population structure, association analysis, multiple comparison and visual presentation of GWAS results are discussed; other advanced topics including the issue of missing heritability, meta-analysis, set- based association analysis, copy number variation analysis and GWAS cohort analysis are also briefly introduced.
  • Related Articles

    [1]Fei Qin, Hao Yu, Changrong Xu, Huihui Chen, Jianling Bai. Safety of axitinib and sorafenib monotherapy for patients with renal cell carcinoma: a meta-analysis[J]. The Journal of Biomedical Research, 2018, 32(1): 30-38. DOI: 10.7555/JBR.32.20170080
    [2]Qian Liu, Cheng Xu, Guixiang Ji, Hui Liu, Wentao Shao, Chunlan Zhang, Aihua Gu, Peng Zhao. Effect of exposure to ambient PM2.5 pollution on the risk of respiratory tract diseases: a meta-analysis of cohort studies[J]. The Journal of Biomedical Research, 2017, 31(2): 130-142. DOI: 10.7555/JBR.31.20160071
    [3]Wei Qian, Kuanfeng Xu, Wenting Jia, Ling Lan, Xuqin Zheng, Xueyang Yang, Dai Cui. Association between TSHR gene polymorphism and the risk of Graves' disease: a meta-analysis[J]. The Journal of Biomedical Research, 2016, 30(6): 466-475. DOI: 10.7555/JBR.30.20140144
    [4]Jinshan Tang, Ziqiang Zhu, Tao Sui, Dechao Kong, Xiaojian Cao. Position and complications of pedicle screw insertion with or without image-navigation techniques in the thoracolumbar spine: a meta-analysis of comparative studies[J]. The Journal of Biomedical Research, 2014, 28(3): 228-239. DOI: 10.7555/JBR.28.20130159
    [5]Wenze Sun, Liping Song, Ting Ai, Yingbing Zhang, Ying Gao, Jie Cui. Prognostic value of MET, cyclin D1 and MET gene copy number in non-small cell lung cancer[J]. The Journal of Biomedical Research, 2013, 27(3): 220-230. DOI: 10.7555/JBR.27.20130004
    [6]Zhiqiang Yin, Jiali Xu, Dan Luo. Efficacy and tolerance of tacrolimus and pimecrolimus for atopic dermatitis: a meta-analysis[J]. The Journal of Biomedical Research, 2011, 25(6): 385-391. DOI: 10.1016/S1674-8301(11)60051-1
    [7]Liang Zong, Ping Chen, Yinbing Chen, Guohao Shi. Pouch Roux-en-Y vs No Pouch Roux-en-Y following total gastrectomy: a meta-analysis based on 12 studies[J]. The Journal of Biomedical Research, 2011, 25(2): 90-99. DOI: 10.1016/S1674-8301(11)60011-0
    [8]Lifeng Zhang, Ning Shao, Qianqian Yu, Lixin Hua, Yuanyuan Mi, Ninghan Feng. Association between p53 Pro72Arg polymorphism and prostate cancer risk: a meta-analysis[J]. The Journal of Biomedical Research, 2011, 25(1): 25-32. DOI: 10.1016/S1674-8301(11)60003-1
    [9]Yuanyuan Mi, Qianqian Yu, Zhichao Min, Bin Xu, Lifeng Zhang, Wei Zhang, Ninghan Feng, Lixin Hua. Arg462Gln and Asp541Glu polymorphisms in ribonuclease L and prostate cancer risk: a meta-analysis[J]. The Journal of Biomedical Research, 2010, 24(5): 365-373. DOI: 10.1016/S1674-8301(10)60049-8
    [10]Bingbing Wei, Yunyun Zhang, Bo Xi, Junkai Chang, Jinming Bai, Jiantang Su. CYP17 T27C polymorphism and prostate cancer risk:a meta-analysis based on 31 studies[J]. The Journal of Biomedical Research, 2010, 24(3): 233-241.
  • Cited by

    Periodical cited type(23)

    1. Kordulewska NK, Król-Grzymała A. The Effect of Osthole on Transient Receptor Potential Channels: A Possible Alternative Therapy for Atopic Dermatitis. J Inflamm Res, 2024, 17: 881-898. DOI:10.2147/JIR.S425978
    2. Naeem A, Hu P, Yang M, et al. Natural Products as Anticancer Agents: Current Status and Future Perspectives. Molecules, 2022, 27(23): 8367. DOI:10.3390/molecules27238367
    3. Kordulewska N, Topa J, Cieślińska A, et al. Osthole Regulates Secretion of Pro-Inflammatory Cytokines and Expression of TLR2 and NF-κB in Normal Human Keratinocytes and Fibroblasts. J Inflamm Res, 2022, 15: 1501-1519. DOI:10.2147/JIR.S349216
    4. Kordulewska NK, Topa J, Rozmus D, et al. Effects of Osthole on Inflammatory Gene Expression and Cytokine Secretion in Histamine-Induced Inflammation in the Caco-2 Cell Line. Int J Mol Sci, 2021, 22(24): 13634. DOI:10.3390/ijms222413634
    5. Zhou XH, Kang J, Zhong ZD, et al. Osthole induces apoptosis of the HT-29 cells via endoplasmic reticulum stress and autophagy. Oncol Lett, 2021, 22(4): 726. DOI:10.3892/ol.2021.12987
    6. Mei J, Wang T, Zhao S, et al. Osthole Inhibits Breast Cancer Progression through Upregulating Tumor Suppressor GNG7. J Oncol, 2021, 2021: 6610511. DOI:10.1155/2021/6610511
    7. Kordulewska NK, Topa J, Tańska M, et al. Modulatory Effects of Osthole on Lipopolysaccharides-Induced Inflammation in Caco-2 Cell Monolayer and Co-Cultures with THP-1 and THP-1-Derived Macrophages. Nutrients, 2020, 13(1): 123. DOI:10.3390/nu13010123
    8. Ávalos-Moreno M, López-Tejada A, Blaya-Cánovas JL, et al. Drug Repurposing for Triple-Negative Breast Cancer. J Pers Med, 2020, 10(4): 200. DOI:10.3390/jpm10040200
    9. Abosharaf HA, Diab T, Atlam FM, et al. Osthole extracted from a citrus fruit that affects apoptosis on A549 cell line by histone deacetylasese inhibition (HDACs). Biotechnol Rep (Amst), 2020, 28: e00531. DOI:10.1016/j.btre.2020.e00531
    10. Ye J, Sun D, Yu Y, et al. Osthole resensitizes CD133+ hepatocellular carcinoma cells to cisplatin treatment via PTEN/AKT pathway. Aging (Albany NY), 2020, 12(14): 14406-14417. DOI:10.18632/aging.103484
    11. Wang B, Shen C, Li Y, et al. Oridonin overcomes the gemcitabine resistant PANC-1/Gem cells by regulating GST pi and LRP/1 ERK/JNK signalling. Onco Targets Ther, 2019, 12: 5751-5765. DOI:10.2147/OTT.S208924
    12. Dai X, Yin C, Zhang Y, et al. Osthole inhibits triple negative breast cancer cells by suppressing STAT3. J Exp Clin Cancer Res, 2018, 37(1): 322. DOI:10.1186/s13046-018-0992-z
    13. Yang Y, Ren F, Tian Z, et al. Osthole Synergizes With HER2 Inhibitor, Trastuzumab in HER2-Overexpressed N87 Gastric Cancer by Inducing Apoptosis and Inhibition of AKT-MAPK Pathway. Front Pharmacol, 2018, 9: 1392. DOI:10.3389/fphar.2018.01392
    14. Zhang S, Huang Q, Cai X, et al. Osthole Ameliorates Renal Fibrosis in Mice by Suppressing Fibroblast Activation and Epithelial-Mesenchymal Transition. Front Physiol, 2018, 9: 1650. DOI:10.3389/fphys.2018.01650
    15. Liu Y, Dong X, Wang W, et al. Molecular Mechanisms of Apoptosis in HepaRG Cell Line Induced by Polyphyllin VI via the Fas Death Pathway and Mitochondrial-Dependent Pathway. Toxins (Basel), 2018, 10(5): 201. DOI:10.3390/toxins10050201
    16. Xu X, Liu X, Zhang Y. Osthole inhibits gastric cancer cell proliferation through regulation of PI3K/AKT. PLoS One, 2018, 13(3): e0193449. DOI:10.1371/journal.pone.0193449
    17. Li LP, Wang XJ, Zhang JY, et al. Antifungal activity of osthol in vitro and enhancement in vivo through Eudragit S100 nanocarriers. Virulence, 2018, 9(1): 555-562. DOI:10.1080/21505594.2017.1356503
    18. Wu C, Sun Z, Guo B, et al. Osthole inhibits bone metastasis of breast cancer. Oncotarget, 2017, 8(35): 58480-58493. DOI:10.18632/oncotarget.17024
    19. Zhu X, Song X, Xie K, et al. Osthole induces apoptosis and suppresses proliferation via the PI3K/Akt pathway in intrahepatic cholangiocarcinoma. Int J Mol Med, 2017, 40(4): 1143-1151. DOI:10.3892/ijmm.2017.3113
    20. Feng H, Lu JJ, Wang Y, et al. Osthole inhibited TGF β-induced epithelial-mesenchymal transition (EMT) by suppressing NF-κB mediated Snail activation in lung cancer A549 cells. Cell Adh Migr, 2017, 11(5-6): 464-475. DOI:10.1080/19336918.2016.1259058
    21. Ying J, Xu H, Wu D, et al. Emodin induces apoptosis of human osteosarcoma cells via mitochondria- and endoplasmic reticulum stress-related pathways. Int J Clin Exp Pathol, 2015, 8(10): 12837-44.
    22. Yang M, Zhu H, Hu T, et al. Association of CCND1 gene polymorphism with cervical cancer susceptibility in Caucasian population: a meta-analysis. Int J Clin Exp Med, 2015, 8(8): 12983-8.
    23. Li H, Wang Q, Dong L, et al. Morusin suppresses breast cancer cell growth in vitro and in vivo through C/EBPβ and PPARγ mediated lipoapoptosis. J Exp Clin Cancer Res, 2015, 34: 137. DOI:10.1186/s13046-015-0252-4

    Other cited types(0)

Catalog

    Article Metrics

    Article views (4925) PDF downloads (907) Cited by(23)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return