4.6

CiteScore

2.2

Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Wei Qian, Kuanfeng Xu, Wenting Jia, Ling Lan, Xuqin Zheng, Xueyang Yang, Dai Cui. Association between TSHR gene polymorphism and the risk of Graves' disease: a meta-analysis[J]. The Journal of Biomedical Research, 2016, 30(6): 466-475. DOI: 10.7555/JBR.30.20140144
Citation: Wei Qian, Kuanfeng Xu, Wenting Jia, Ling Lan, Xuqin Zheng, Xueyang Yang, Dai Cui. Association between TSHR gene polymorphism and the risk of Graves' disease: a meta-analysis[J]. The Journal of Biomedical Research, 2016, 30(6): 466-475. DOI: 10.7555/JBR.30.20140144

Association between TSHR gene polymorphism and the risk of Graves' disease: a meta-analysis

More Information
  • Received Date: November 29, 2014
  • Revised Date: February 03, 2015
  • Thyroid stimulating hormone receptor (TSHR) is thought to be a significant candidate for genetic susceptibility to Graves' disease (GD). However, the association between TSHR gene polymorphism and the risk of GD remains controversial. In this study, we investigated the relationship between the two conditions by meta-analysis. We searched all relevant case-control studies in PubMed, Web of Science, CNKI and Wanfang for literature available until May 2015, and chose studies on two single nucleotide polymorphisms (SNPs): rs179247 and rs12101255, within TSHR intron-1. Bias of heterogeneity test among studies was determined by the fixed or random effect pooled measure, and publication bias was examined by modified Begg's and Egger's test. Eight eligible studies with 15 outcomes were involved in this meta-analysis, including 6,976 GD cases and 7,089 controls from China, Japan, Poland, UK and Brazil. Pooled odds ratios (ORs) for allelic comparisons showed that both TSHR rs179247A/G and rs12101255T/C polymorphism had significant association with GD (OR=1.422, 95%CI=1.353–1.495, P<0.001, P heterogeneity=0.448; OR=1.502, 95%CI: 1.410–1.600, P<0.001, P heterogeneity=0.642), and the associations were the same under dominant, recessive and co-dominant models. In subgroup analyses, the conclusions are also consistent with all those in Asian, European and South America subgroups (P<0.001). Our meta-analysis revealed a significant association between TSHR rs179247A/G and rs12101255T/C polymorphism with GD in five different populations from Asia, Europe and South America. Further studies are needed in other ethnic backgrounds to independently confirm our findings.
  • Related Articles

    [1]Izzatullo Ziyoyiddin o`g`li Abdullaev, Ulugbek Gapparjanovich Gayibov, Sirojiddin Zoirovich Omonturdiev, Sobirova Fotima Azamjonovna, Sabina Narimanovna Gayibova, Takhir Fatikhovich Aripov. Molecular pathways in cardiovascular disease under hypoxia: Mechanisms, biomarkers, and therapeutic targets[J]. The Journal of Biomedical Research. DOI: 10.7555/JBR.38.20240387
    [2]Hamed Amini Amirkolaee, Hamid Amini Amirkolaee. Medical image translation using an edge-guided generative adversarial network with global-to-local feature fusion[J]. The Journal of Biomedical Research, 2022, 36(6): 409-422. DOI: 10.7555/JBR.36.20220037
    [3]Qian Sun, Yusi Hu, Saiyue Deng, Yanyu Xiong, Zhili Huang. A visualization pipeline for in vivo two-photon volumetric astrocytic calcium imaging[J]. The Journal of Biomedical Research, 2022, 36(5): 358-367. DOI: 10.7555/JBR.36.20220099
    [4]Li Tiannv, Sun Jin, Hu Yao, Yang Min, Shi Haibin, Tang Lijun. Near-infrared fluorescent labeled CGRRAGGSC peptides for optical imaging of IL-11Rα in athymic mice bearing tumor xenografts[J]. The Journal of Biomedical Research, 2019, 33(6): 391-397. DOI: 10.7555/JBR.33.20180136
    [5]Xiaoquan Xu, Feiyun Wu, Yunxiang Chen, Hao Hu, Meiling Bao. CT and multimodal imaging findings of primary orbital Ewing's sarcoma involving the middle cranial fossa: a case report[J]. The Journal of Biomedical Research, 2017, 31(2): 170-174. DOI: 10.7555/JBR.30.20140132
    [6]Timothy McAlindon, Eckart Bartnik, Janina S. Ried, Lenore Teichert, Matthias Herrmann, Klaus Flechsenhar. Determination of serum biomarkers in osteoarthritis patients: a previous interventional imaging study revisited[J]. The Journal of Biomedical Research, 2017, 31(1): 25-30. DOI: 10.7555/JBR.31.20150167
    [7]Hongming Zhuang, Ion Codreanu. Growing applications of FDG PET-CT imaging in non-oncologic conditions[J]. The Journal of Biomedical Research, 2015, 29(3): 189-202. DOI: 10.7555/JBR.29.20140081
    [8]Marina Piccinelli, Ernest Garcia. Multimodality image fusion for diagnosing coronary artery disease[J]. The Journal of Biomedical Research, 2013, 27(6): 439-451. DOI: 10.7555/JBR.27.20130138
    [9]Yumin Zhang, Gerard B. Fox. PET imaging for receptor occupancy: meditations on calculation and simplification[J]. The Journal of Biomedical Research, 2012, 26(2): 69-76. DOI: 10.1016/S1674-8301(12)60014-1
    [10]Lihua Liu, Ming Zhang, Yuan Wang, Min Li. The relationship between the expression of tumor matrix-metalloproteinase and the characteristics of magnetic resonance imaging of human gliomas[J]. The Journal of Biomedical Research, 2010, 24(2): 124-131.
  • Cited by

    Periodical cited type(1)

    1. Tian M, Li Y, Chen H. 18F-FDG PET/CT Image Deep Learning Predicts Colon Cancer Survival. Contrast Media Mol Imaging, 2023, 2023: 2986379. DOI:10.1155/2023/2986379

    Other cited types(0)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return