4.6

CiteScore

2.2

Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Tanja Stachon, Jiong Wang, Xufei Song, Achim Langenbucher, Berthold Seitz, No´ra Szentma´ry. Impact of crosslinking/riboflavin-UVA-photodynamic inactivation on viability, apoptosis and activation of human keratocytes in vitro[J]. The Journal of Biomedical Research, 2015, 29(4): 321-325. DOI: 10.7555/JBR.29.20130173
Citation: Tanja Stachon, Jiong Wang, Xufei Song, Achim Langenbucher, Berthold Seitz, No´ra Szentma´ry. Impact of crosslinking/riboflavin-UVA-photodynamic inactivation on viability, apoptosis and activation of human keratocytes in vitro[J]. The Journal of Biomedical Research, 2015, 29(4): 321-325. DOI: 10.7555/JBR.29.20130173

Impact of crosslinking/riboflavin-UVA-photodynamic inactivation on viability, apoptosis and activation of human keratocytes in vitro

More Information
  • Received Date: November 07, 2015
  • Riboflavin-UVA photodynamic inactivation is a potential treatment alternative in therapy resistant infectious keratitis. The purpose of our study was to determine the impact of riboflavin-UVA photodynamic inactivation on viability, apop- tosis and activation of human keratocytes in vitro. Primary human keratocytes were isolated from human corneal buttons and cultured in DMEM/Ham9s F12 medium supplemented with 10% fetal calf serum. Keratocytes underwent UVA light illumination (375 nm) for 4.10 minutes (2 J/cm 2) during exposure to different concentrations of riboflavin. Twenty-four hours after treatment, cell viability was evaluated photometrically, whereas apoptosis, CD34 and alpha-smooth muscle actin (a-SMA) expression were assessed using flow cytometry. We did not detect significant changes in cell viability, apoptosis, CD34 and a-SMA expression in groups only treated with riboflavin or UVA light. In the group treated with riboflavin-UVA-photodynamic inactivation, viability of keratocytes decreased significantly at 0.1% riboflavin (P,0.01) while the percentage of CD34 (P,0.01 for both 0.05% and 0.1% riboflavin) and alpha-SMA positive keratocytes (P,0.01 and P,0.05 for 0.05% and 0.1% riboflavin, respectively) increased significantly compared to the controls. There was no significant change in the percentage of apoptotic keratocytes compared to controls at any of the used ribo- flavin concentrations (P50.09 and P50.13). We concluded that riboflavin-UVA-photodynamic-inactivation decreases viability of myofibroblastic transformation and multipotent haematopoietic stem cell transformation; however, it does not have an impact on apoptosis of human keratocytes in vitro.
  • Related Articles

    [1]Wenjing Tang, Haiyan Yan, Xiaojun Chen, Yanan Pu, Xin Qi, Liyang Dong, Chuan Su. hUCMSC-derived extracellular vesicles relieve cisplatin-induced granulosa cell apoptosis in mice by transferring anti-apoptotic miRNAs[J]. The Journal of Biomedical Research, 2025, 39(1): 36-49. DOI: 10.7555/JBR.37.20230310
    [2]Kuppusamy Periyasamy, Venkatachalam Sivabalan, Kuppusamy Baskaran, Kannayiram Kasthuri, Dhanapal Sakthisekaran. Cellular metabolic energy modulation by tangeretin in 7,12-dimethylbenz(a) anthracene-induced breast cancer[J]. The Journal of Biomedical Research, 2016, 30(2): 134-141. DOI: 10.7555/JBR.30.20150060
    [3]Tanja Stachon, Jiong Wang, Xufei Song, Achim Langenbucher, Berthold Seitz, No´ra Szentma´ry. Impact of crosslinking/riboflavin-UVA-photodynamic inactivation on viability, apoptosis and activation of human keratocytes in vitro[J]. The Journal of Biomedical Research, 2015, 29(4): 321-325. DOI: 10.7555/JBR.29.20130173
    [4]Xiaofan Yang, Bin Sun, Huijuan Wang, Cheng Yin, Xiaole Wang, Xiaohui Ji. Increased serum IL-10 in lupus patients promotes apoptosis of T cell subsets via the caspase 8 pathway initiated by Fas signaling[J]. The Journal of Biomedical Research, 2015, 29(3): 232-240. DOI: 10.7555/JBR.29.20130037
    [5]Qian Li, Pan Zhang, Chao Zhang, Ying Wang, Ru Wan, Ye Yang, Xuejiang Guo, Ran Huo, Min Lin, Zuomin Zhou, Jiahao Sha. DDX3X regulates cell survival and cell cycle during mouse early embryonic development[J]. The Journal of Biomedical Research, 2014, 28(4): 282-291. DOI: 10.7555/JBR.27.20130047
    [6]Pengpeng Jin, Xiaoli Wang, Fei Chang, Yinyang Bai, Yingchun Li, Rong Zhou, Ling Chen. Low dose bisphenol A impairs spermatogenesis by suppressing reproductive hormone production and promoting germ cell apoptosis in adult rats[J]. The Journal of Biomedical Research, 2013, 27(2): 135-144. DOI: 10.7555/JBR.27.20120076
    [7]Yan Li, Yi Jiang, Yicong Wan, Lin Zhang, Weiwei Tang, Jingjing Ma, Shan Wu, Wenjun Cheng. Medroxyprogestogen enhances apoptosis of SKOV-3 cells via inhibition of the PI3K/Akt signaling pathway[J]. The Journal of Biomedical Research, 2013, 27(1): 43-50. DOI: 10.7555/JBR.27.20120051
    [8]Di Liu, Peng Xia, Dongmei Diao, Yao Cheng, Hao Zhang, Dawei Yuan, Chen Huang, Chengxue Dang. MiRNA-429 suppresses the growth of gastric cancer cells in vitro[J]. The Journal of Biomedical Research, 2012, 26(5): 389-393. DOI: 10.7555/JBR.26.20120029
    [9]Xiaozheng Zhong, Xiaoyu Li, Lingling Qian, Yiming Xu, Yan Lu, Jing Zhang, Nan Li, Xudong Zhu, Jingjing Ben, Qing Yang, Qi Chen. Glycine attenuates myocardial ischemia-reperfusion injury by inhibiting myocardial apoptosis in rats[J]. The Journal of Biomedical Research, 2012, 26(5): 346-354. DOI: 10.7555/JBR.26.20110124
    [10]Lingyun Li, Jing Chi, Feng Zhou, Dandan Guo, Fang Wang, Genyan Liu, Chun Zhang, Kun Yao. Human herpesvirus 6A induces apoptosis of HSB-2 cells via a mitochondrion-related caspase pathway[J]. The Journal of Biomedical Research, 2010, 24(6): 444-451. DOI: 10.1016/S1674-8301(10)60059-0
  • Cited by

    Periodical cited type(23)

    1. Kordulewska NK, Król-Grzymała A. The Effect of Osthole on Transient Receptor Potential Channels: A Possible Alternative Therapy for Atopic Dermatitis. J Inflamm Res, 2024, 17: 881-898. DOI:10.2147/JIR.S425978
    2. Naeem A, Hu P, Yang M, et al. Natural Products as Anticancer Agents: Current Status and Future Perspectives. Molecules, 2022, 27(23): 8367. DOI:10.3390/molecules27238367
    3. Kordulewska N, Topa J, Cieślińska A, et al. Osthole Regulates Secretion of Pro-Inflammatory Cytokines and Expression of TLR2 and NF-κB in Normal Human Keratinocytes and Fibroblasts. J Inflamm Res, 2022, 15: 1501-1519. DOI:10.2147/JIR.S349216
    4. Kordulewska NK, Topa J, Rozmus D, et al. Effects of Osthole on Inflammatory Gene Expression and Cytokine Secretion in Histamine-Induced Inflammation in the Caco-2 Cell Line. Int J Mol Sci, 2021, 22(24): 13634. DOI:10.3390/ijms222413634
    5. Zhou XH, Kang J, Zhong ZD, et al. Osthole induces apoptosis of the HT-29 cells via endoplasmic reticulum stress and autophagy. Oncol Lett, 2021, 22(4): 726. DOI:10.3892/ol.2021.12987
    6. Mei J, Wang T, Zhao S, et al. Osthole Inhibits Breast Cancer Progression through Upregulating Tumor Suppressor GNG7. J Oncol, 2021, 2021: 6610511. DOI:10.1155/2021/6610511
    7. Kordulewska NK, Topa J, Tańska M, et al. Modulatory Effects of Osthole on Lipopolysaccharides-Induced Inflammation in Caco-2 Cell Monolayer and Co-Cultures with THP-1 and THP-1-Derived Macrophages. Nutrients, 2020, 13(1): 123. DOI:10.3390/nu13010123
    8. Ávalos-Moreno M, López-Tejada A, Blaya-Cánovas JL, et al. Drug Repurposing for Triple-Negative Breast Cancer. J Pers Med, 2020, 10(4): 200. DOI:10.3390/jpm10040200
    9. Abosharaf HA, Diab T, Atlam FM, et al. Osthole extracted from a citrus fruit that affects apoptosis on A549 cell line by histone deacetylasese inhibition (HDACs). Biotechnol Rep (Amst), 2020, 28: e00531. DOI:10.1016/j.btre.2020.e00531
    10. Ye J, Sun D, Yu Y, et al. Osthole resensitizes CD133+ hepatocellular carcinoma cells to cisplatin treatment via PTEN/AKT pathway. Aging (Albany NY), 2020, 12(14): 14406-14417. DOI:10.18632/aging.103484
    11. Wang B, Shen C, Li Y, et al. Oridonin overcomes the gemcitabine resistant PANC-1/Gem cells by regulating GST pi and LRP/1 ERK/JNK signalling. Onco Targets Ther, 2019, 12: 5751-5765. DOI:10.2147/OTT.S208924
    12. Dai X, Yin C, Zhang Y, et al. Osthole inhibits triple negative breast cancer cells by suppressing STAT3. J Exp Clin Cancer Res, 2018, 37(1): 322. DOI:10.1186/s13046-018-0992-z
    13. Yang Y, Ren F, Tian Z, et al. Osthole Synergizes With HER2 Inhibitor, Trastuzumab in HER2-Overexpressed N87 Gastric Cancer by Inducing Apoptosis and Inhibition of AKT-MAPK Pathway. Front Pharmacol, 2018, 9: 1392. DOI:10.3389/fphar.2018.01392
    14. Zhang S, Huang Q, Cai X, et al. Osthole Ameliorates Renal Fibrosis in Mice by Suppressing Fibroblast Activation and Epithelial-Mesenchymal Transition. Front Physiol, 2018, 9: 1650. DOI:10.3389/fphys.2018.01650
    15. Liu Y, Dong X, Wang W, et al. Molecular Mechanisms of Apoptosis in HepaRG Cell Line Induced by Polyphyllin VI via the Fas Death Pathway and Mitochondrial-Dependent Pathway. Toxins (Basel), 2018, 10(5): 201. DOI:10.3390/toxins10050201
    16. Xu X, Liu X, Zhang Y. Osthole inhibits gastric cancer cell proliferation through regulation of PI3K/AKT. PLoS One, 2018, 13(3): e0193449. DOI:10.1371/journal.pone.0193449
    17. Li LP, Wang XJ, Zhang JY, et al. Antifungal activity of osthol in vitro and enhancement in vivo through Eudragit S100 nanocarriers. Virulence, 2018, 9(1): 555-562. DOI:10.1080/21505594.2017.1356503
    18. Wu C, Sun Z, Guo B, et al. Osthole inhibits bone metastasis of breast cancer. Oncotarget, 2017, 8(35): 58480-58493. DOI:10.18632/oncotarget.17024
    19. Zhu X, Song X, Xie K, et al. Osthole induces apoptosis and suppresses proliferation via the PI3K/Akt pathway in intrahepatic cholangiocarcinoma. Int J Mol Med, 2017, 40(4): 1143-1151. DOI:10.3892/ijmm.2017.3113
    20. Feng H, Lu JJ, Wang Y, et al. Osthole inhibited TGF β-induced epithelial-mesenchymal transition (EMT) by suppressing NF-κB mediated Snail activation in lung cancer A549 cells. Cell Adh Migr, 2017, 11(5-6): 464-475. DOI:10.1080/19336918.2016.1259058
    21. Ying J, Xu H, Wu D, et al. Emodin induces apoptosis of human osteosarcoma cells via mitochondria- and endoplasmic reticulum stress-related pathways. Int J Clin Exp Pathol, 2015, 8(10): 12837-44.
    22. Yang M, Zhu H, Hu T, et al. Association of CCND1 gene polymorphism with cervical cancer susceptibility in Caucasian population: a meta-analysis. Int J Clin Exp Med, 2015, 8(8): 12983-8.
    23. Li H, Wang Q, Dong L, et al. Morusin suppresses breast cancer cell growth in vitro and in vivo through C/EBPβ and PPARγ mediated lipoapoptosis. J Exp Clin Cancer Res, 2015, 34: 137. DOI:10.1186/s13046-015-0252-4

    Other cited types(0)

Catalog

    Article Metrics

    Article views (3447) PDF downloads (615) Cited by(23)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return