4.6

CiteScore

2.2

Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Jennifer M. Bratt, Amir A. Zeki, Jerold A. Last, Nicholas J. Kenyon. Competitive metabolism of L-arginine: arginase as a therapeutic target in asthma[J]. The Journal of Biomedical Research, 2011, 25(5): 299-308. DOI: 10.1016/S1674-8301(11)60041-9
Citation: Jennifer M. Bratt, Amir A. Zeki, Jerold A. Last, Nicholas J. Kenyon. Competitive metabolism of L-arginine: arginase as a therapeutic target in asthma[J]. The Journal of Biomedical Research, 2011, 25(5): 299-308. DOI: 10.1016/S1674-8301(11)60041-9

Competitive metabolism of L-arginine: arginase as a therapeutic target in asthma

Funds: 

The study was supported by the following grants: National Institute of Environmental Health Sciences funded training program in Environ-mental Health Sciences (No. T32 ES007058-33) to Jennifer M. Bratt, CTSC K12 Award (No. UL1RR024146) and KL2RR024144 to Amir A. Zeki, and the American Asthma Foundation to Nicholas J. Kenyon.

More Information
  • Exhaled breath nitric oxide (NO) is an accepted asthma biomarker. Lung concentrations of NO and its amino acid precursor, L-arginine, are regulated by the relative expressions of the NO synthase (NOS) and arginase iso-forms. Increased expression of arginase I and NOS2 occurs in murine models of allergic asthma and in biopsies of asthmatic airways. Although clinical trials involving the inhibition of NO-producing enzymes have shown mixed results, small molecule arginase inhibitors have shown potential as a therapeutic intervention in animal and cell culture models. Their transition to clinical trials is hampered by concerns regarding their safety and potential tox-icity. In this review, we discuss the paradigm of arginase and NOS competition for their substrate L-arginine in the asthmatic airway. We address the functional role of L-arginine in inflammation and the potential role of arginase inhibitors as therapeutics.
  • Related Articles

    [1]Tiwari-Heckler Shilpa, Jiang Z. Gordon, Popov Yury, J. Mukamal Kenneth. Daily high-dose aspirin does not lower APRI in the Aspirin-Myocardial Infarction Study[J]. The Journal of Biomedical Research, 2020, 34(2): 139-142. DOI: 10.7555/JBR.33.20190041
    [2]Tao Chun'ai, Gan Yongxin, Su Weidong, Li Zhutian, Tang Xiaolan. Effectiveness of hospital disinfection and experience learnt from 11 years of surveillance[J]. The Journal of Biomedical Research, 2019, 33(6): 408-413. DOI: 10.7555/JBR.33.20180118
    [3]Huan Liu, Shijiang Zhang, Yongfeng Shao, Xiaohu Lu, Weidong Gu, Buqing Ni, Qun Gu, Junjie Du. Biomechanical characterization of a novel ring connector for sutureless aortic anastomosis[J]. The Journal of Biomedical Research, 2018, 32(6): 454-460. DOI: 10.7555/JBR.31.20170011
    [4]Minbo Zang, Qiao Zhou, Yunfei Zhu, Mingxi Liu, Zuomin Zhou. Effects of chemotherapeutic agent bendamustine for nonhodgkin lymphoma on spermatogenesis in mice[J]. The Journal of Biomedical Research, 2018, 32(6): 442-453. DOI: 10.7555/JBR.31.20170023
    [5]Kaibo Lin, Shikun Zhang, Jieli Chen, Ding Yang, Mengyi Zhu, Eugene Yujun Xu. Generation and functional characterization of a conditional Pumilio2 null allele[J]. The Journal of Biomedical Research, 2018, 32(6): 434-441. DOI: 10.7555/JBR.32.20170117
    [6]Huanqiang Wang, Congying Yang, Siyuan Wang, Tian Wang, Jingling Han, Kai Wei, Fucun Liu, Jida Xu, Xianzhen Peng, Jianming Wang. Cell-free plasma hypermethylated CASZ1, CDH13 and ING2 are promising biomarkers of esophageal cancer[J]. The Journal of Biomedical Research, 2018, 32(6): 424-433. DOI: 10.7555/JBR.32.20170065
    [7]Fengzhen Wang, Mingwan Zhang, Dongsheng Zhang, Yuan Huang, Li Chen, Sunmin Jiang, Kun Shi, Rui Li. Preparation, optimization, and characterization of chitosancoated solid lipid nanoparticles for ocular drug delivery[J]. The Journal of Biomedical Research, 2018, 32(6): 411-423. DOI: 10.7555/JBR.32.20160170
    [8]Christopher J. Danford, Zemin Yao, Z. Gordon Jiang. Non-alcoholic fatty liver disease: a narrative review of genetics[J]. The Journal of Biomedical Research, 2018, 32(6): 389-400. DOI: 10.7555/JBR.32.20180045
    [9]Wankupar Wankhar, Sakthivel Srinivasan, Ravindran Rajan, Rathinasamy Sheeladevi. Antioxidant mediated response of Scoparia dulcis in noise induced redox imbalance and immunohistochemical changes in rat brain[J]. The Journal of Biomedical Research, 2017, 31(2): 143-153. DOI: 10.7555/JBR.31.20150063
    [10]Jun Wang, Wenyi Qian, Qing Zhu, Jian Chen, Fei Huan, Rong Gao, Hang Xiao. Martentoxin, a large-conductance Ca2+-activated K+ channel inhibitor, attenuated TNF-α-induced nitric oxide release by human umbilical vein endothelial cells[J]. The Journal of Biomedical Research, 2013, 27(5): 386-393. DOI: 10.7555/JBR.27.20120080

Catalog

    Article Metrics

    Article views (3358) PDF downloads (1402) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return