4.6

CiteScore

2.2

Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Xiaoqing Yuan, Yawei Liu, Xule Yang, Yun Huang, Xuan Shen, Hui Liang, Hongwen Zhou, Qian Wang, Xu Zhang, John Zhong Li. Long noncoding RNA lnc_217 regulates hepatic lipid metabolism by modulating lipogenesis and fatty acid oxidation[J]. The Journal of Biomedical Research, 2023, 37(6): 448-459. DOI: 10.7555/JBR.37.20230075
Citation: Xiaoqing Yuan, Yawei Liu, Xule Yang, Yun Huang, Xuan Shen, Hui Liang, Hongwen Zhou, Qian Wang, Xu Zhang, John Zhong Li. Long noncoding RNA lnc_217 regulates hepatic lipid metabolism by modulating lipogenesis and fatty acid oxidation[J]. The Journal of Biomedical Research, 2023, 37(6): 448-459. DOI: 10.7555/JBR.37.20230075

Long noncoding RNA lnc_217 regulates hepatic lipid metabolism by modulating lipogenesis and fatty acid oxidation

More Information
  • Corresponding author:

    Xu Zhang, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu 211166, China. Tel: +86-25-86869418, E-mail: zhangxu@njmu.edu.cn

    John Zhong Li, Department of Biochemistry and Molecular Biology of Nanjing Medical University, Nanjing, Jiangsu 211166, China. Tel: +86-25-86869427, E-mail: lizhong@njmu.edu.cn

  • Received Date: March 30, 2023
  • Revised Date: May 22, 2023
  • Accepted Date: May 25, 2023
  • Available Online: November 14, 2023
  • Published Date: November 14, 2023
  • Nonalcoholic fatty liver disease (NAFLD) is considered a major health epidemic with an estimated 32.4% worldwide prevalence. No drugs have yet been approved and therapeutic nodes remain a major unmet need. Long noncoding RNAs are emerging as an important class of novel regulators influencing multiple biological processes and the pathogenesis of NAFLD. Herein, we described a novel long noncoding RNA, lnc_217, which was liver enriched and upregulated in high-fat diet-fed mice, and a genetic animal model of NAFLD. We found that liver specific knockdown of lnc_217 was resistant to high-fat diet-induced hepatic lipid accumulation and decreased serum lipid in mice. Mechanistically, we demonstrated that knockdown of lnc_217 not only decreased de novo lipogenesis by inhibiting sterol regulatory element binding protein-1c cleavage but also increased fatty acid β-oxidation through activation of peroxisome proliferator-activated receptor α and carnitine palmitoyltransferase-1α. Taken together, we conclude that lnc_217 may be a novel regulator of hepatic lipid metabolism and a potential therapeutic target for the treatment of hepatic steatosis and NAFLD-related metabolic disorders.

  • None.

    This work was supported by grants from the National Natural Science Foundation of China (Grant Nos. 32130050, 32201064, and 82170838), and the Natural Science Research Project of Universities in Jiangsu Province (Grant No. 21KJB180003).

    CLC number: R575.5, Document code: A

    The authors reported no conflict of interests.

  • [1]
    Riazi K, Azhari H, Charette JH, et al. The prevalence and incidence of NAFLD worldwide: a systematic review and meta-analysis[J]. Lancet Gastroenterol Hepatol, 2022, 7(9): 851–861. doi: 10.1016/S2468-1253(22)00165-0
    [2]
    Zhou J, Zhou F, Wang W, et al. Epidemiological features of NAFLD from 1999 to 2018 in China[J]. Hepatology, 2020, 71(5): 1851–1864. doi: 10.1002/hep.31150
    [3]
    Negi CK, Babica P, Bajard L, et al. Insights into the molecular targets and emerging pharmacotherapeutic interventions for nonalcoholic fatty liver disease[J]. Metabolism, 2022, 126: 154925. doi: 10.1016/j.metabol.2021.154925
    [4]
    Tarantino G, Balsano C, Santini SJ, et al. It is high time physicians thought of natural products for alleviating NAFLD. Is there sufficient evidence to use them?[J]. Int J Mol Sci, 2021, 22(24): 13424. doi: 10.3390/ijms222413424
    [5]
    Diraison F, Moulin P, Beylot M. Contribution of hepatic de novo lipogenesis and reesterification of plasma non esterified fatty acids to plasma triglyceride synthesis during non-alcoholic fatty liver disease[J]. Diabetes Metab, 2003, 29(5): 478–485. doi: 10.1016/S1262-3636(07)70061-7
    [6]
    Donnelly KL, Smith CI, Schwarzenberg SJ, et al. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease[J]. J Clin Invest, 2005, 115(5): 1343–1351. doi: 10.1172/JCI23621
    [7]
    Batchuluun B, Pinkosky SL, Steinberg GR. Lipogenesis inhibitors: therapeutic opportunities and challenges[J]. Nat Rev Drug Discov, 2022, 21(4): 283–305. doi: 10.1038/s41573-021-00367-2
    [8]
    Um SH, Frigerio F, Watanabe M, et al. Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity[J]. Nature, 2004, 431(7005): 200–205. doi: 10.1038/nature02866
    [9]
    Yan F, Wang Q, Lu M, et al. Thyrotropin increases hepatic triglyceride content through upregulation of SREBP-1c activity[J]. J Hepatol, 2014, 61(6): 1358–1364. doi: 10.1016/j.jhep.2014.06.037
    [10]
    Lee K, Kerner J, Hoppel CL. Mitochondrial carnitine palmitoyltransferase 1a (CPT1a) is part of an outer membrane fatty acid transfer complex[J]. J Biol Chem, 2011, 286(29): 25655–25662. doi: 10.1074/jbc.M111.228692
    [11]
    Gross B, Pawlak M, Lefebvre P, et al. PPARs in obesity-induced T2DM, dyslipidaemia and NAFLD[J]. Nat Rev Endocrinol, 2017, 13(1): 36–49. doi: 10.1038/nrendo.2016.135
    [12]
    Hu X, Tanaka N, Guo R, et al. PPARα protects against trans-fatty-acid-containing diet-induced steatohepatitis[J]. J Nutr Biochem, 2017, 39: 77–85. doi: 10.1016/j.jnutbio.2016.09.015
    [13]
    Patel DD, Knight BL, Wiggins D, et al. Disturbances in the normal regulation of SREBP-sensitive genes in PPARα-deficient mice[J]. J Lipid Res, 2001, 42(3): 328–337. doi: 10.1016/S0022-2275(20)31655-2
    [14]
    Fernandez-Alvarez A, Alvarez MS, Gonzalez R, et al. Human SREBP1c expression in liver is directly regulated by peroxisome proliferator-activated receptor α (PPARα)[J]. J Biol Chem, 2011, 286(24): 21466–21477. doi: 10.1074/jbc.M110.209973
    [15]
    Mao J, DeMayo FJ, Li H, et al. Liver-specific deletion of acetyl-CoA carboxylase 1 reduces hepatic triglyceride accumulation without affecting glucose homeostasis[J]. Proc Natl Acad Sci U S A, 2006, 103(22): 8552–8557. doi: 10.1073/pnas.0603115103
    [16]
    Savage DB, Choi CS, Samuel VT, et al. Reversal of diet-induced hepatic steatosis and hepatic insulin resistance by antisense oligonucleotide inhibitors of acetyl-CoA carboxylases 1 and 2[J]. J Clin Invest, 2006, 116(3): 817–824. doi: 10.1172/JCI27300
    [17]
    Guttman M, Amit I, Garber M, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals[J]. Nature, 2009, 458(7235): 223–227. doi: 10.1038/nature07672
    [18]
    Kapranov P, Cheng J, Dike S, et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription[J]. Science, 2007, 316(5830): 1484–1488. doi: 10.1126/science.1138341
    [19]
    Batista PJ, Chang HY. Long noncoding RNAs: cellular address codes in development and disease[J]. Cell, 2013, 152(6): 1298–1307. doi: 10.1016/j.cell.2013.02.012
    [20]
    Li P, Ruan X, Yang L, et al. A liver-enriched long non-coding RNA, lncLSTR, regulates systemic lipid metabolism in mice[J]. Cell Metab, 2015, 21(3): 455–467. doi: 10.1016/j.cmet.2015.02.004
    [21]
    Shen X, Zhang Y, Ji X, et al. Long noncoding RNA lncRHPL regulates hepatic VLDL secretion by modulating hnRNPU/BMAL1/MTTP axis[J]. Diabetes, 2022, 71(9): 1915–1928. doi: 10.2337/db21-1145
    [22]
    He W, Liang B, Wang C, et al. MSC-regulated lncRNA MACC1-AS1 promotes stemness and chemoresistance through fatty acid oxidation in gastric cancer[J]. Oncogene, 2019, 38(23): 4637–4654. doi: 10.1038/s41388-019-0747-0
    [23]
    Li D, Cheng M, Niu Y, et al. Identification of a novel human long non-coding RNA that regulates hepatic lipid metabolism by inhibiting SREBP-1c[J]. Int J Biol Sci, 2017, 13(3): 349–357. doi: 10.7150/ijbs.16635
    [24]
    Cui M, Xiao Z, Wang Y, et al. Long noncoding RNA HULC modulates abnormal lipid metabolism in Hepatoma cells through an miR-9-mediated RXRA signaling pathway[J]. Cancer Res, 2015, 75(5): 846–857. doi: 10.1158/0008-5472.CAN-14-1192
    [25]
    Mashek DG. Hepatic fatty acid trafficking: multiple forks in the road[J]. Adv Nutr, 2013, 4(6): 697–710. doi: 10.3945/an.113.004648
    [26]
    Gosis BS, Wada S, Thorsheim C, et al. Inhibition of nonalcoholic fatty liver disease in mice by selective inhibition of mTORC1[J]. Science, 2022, 376(6590): eabf8271. doi: 10.1126/science.abf8271
    [27]
    van Solingen C, Scacalossi KR, Moore KJ. Long noncoding RNAs in lipid metabolism[J]. Curr Opin Lipidol, 2018, 29(3): 224–232. doi: 10.1097/MOL.0000000000000503
    [28]
    Duan J, Huang Z, Nice EC, et al. Current advancements and future perspectives of long noncoding RNAs in lipid metabolism and signaling[J]. J Adv Res, 2022, doi: 10.1016/j.jare.2022.08.007.
    [29]
    Quinn JJ, Chang HY. Unique features of long non-coding RNA biogenesis and function[J]. Nat Rev Genet, 2016, 17(1): 47–62. doi: 10.1038/nrg.2015.10
    [30]
    Chen W, Zhang K, Yang Y, et al. MEF2A-mediated lncRNA HCP5 inhibits gastric cancer progression via MiR-106b-5p/p21 axis[J]. Int J Biol Sci, 2021, 17(2): 623–634. doi: 10.7150/ijbs.55020
    [31]
    Yan C, Chen J, Chen N. Long noncoding RNA MALAT1 promotes hepatic steatosis and insulin resistance by increasing nuclear SREBP-1c protein stability[J]. Sci Rep, 2016, 6: 22640. doi: 10.1038/srep22640
    [32]
    Munschauer M, Nguyen CT, Sirokman K, et al. The NORAD lncRNA assembles a topoisomerase complex critical for genome stability[J]. Nature, 2018, 561(7721): 132–136. doi: 10.1038/s41586-018-0453-z
  • Other Related Supplements

Catalog

    Figures(6)

    Article Metrics

    Article views (607) PDF downloads (75) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return