4.6

CiteScore

2.2

Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Ibrahim Mohamed Hamouda. Current perspectives of nanoparticles in medical and dental biomaterials[J]. The Journal of Biomedical Research, 2012, 26(3): 143-151. DOI: 10.7555/JBR.26.20120027
Citation: Ibrahim Mohamed Hamouda. Current perspectives of nanoparticles in medical and dental biomaterials[J]. The Journal of Biomedical Research, 2012, 26(3): 143-151. DOI: 10.7555/JBR.26.20120027

Current perspectives of nanoparticles in medical and dental biomaterials

More Information
  • Received Date: March 21, 2012
  • Nanotechnology is gaining tremendous impetus due to its capability of modulating metals into their nanosize, which drastically changes the chemical, physical and optical properties of metals. Nanoparticles have been introduced as materials with good potential to be extensively used in biological and medical applications. Nanoparticles are clusters of atoms in the size range of 1-100 nm. Inorganic nanoparticles and their nano-composites are applied as good antibacterial agents. Due to the outbreak of infectious diseases caused by different pathogenic bacteria and the development of antibiotic resistance, pharmaceutical companies and researchers are searching for new antibacterial agents. The metallic nanoparticles are the most promising as they show good antibacterial properties due to their large surface area to volume ratios, which draw growing interest from researchers due to increasing microbial resistance against metal ions, antibiotics and the development of resistant strains. Metallic nanoparticles can be used as effective growth inhibitors in various microorganisms and thereby are applicable to diverse medical devices. Nanotechnology discloses the use of elemental nanoparticles as active antibacterial ingredient for dental materials. In dentistry, both restorative materials and oral bacteria are believed to be responsible for restoration failure. Secondary caries is found to be the main reason to restoration failure. Secondary caries is primarily caused by invasion of plaque bacteria (acid-producing bacteria) such as Streptococcus mutans and lactobacilli in the presence of fermentable carbohydrates. To make long-lasting restorations, antibacterial materials should be made. The potential of nanoparticles to control the formation of biofilms within the oral cavity is also coming under increasing scrutiny. Possible uses of nanoparticles as topically applied agents within dental materials and the application of nanoparticles in the control of oral infections are also reviewed.
  • Related Articles

    [1]M.R. Khazdair. Crocus sativus (Saffron): A potential multifunctional therapeutic agent for neurodegenerative disorders[J]. The Journal of Biomedical Research, 2025, 39(1): 114-116. DOI: 10.7555/JBR.38.20240131
    [2]Yamei Gao, Shaohu Huo, Chao Chen, Shiyu Du, Ruiyuan Xia, Jian Liu, Dandan Chen, Ziyue Diao, Xin Han, Zhiqiang Yin. Gold nanorods as biocompatible nano-agents for the enhanced photothermal therapy in skin disorders[J]. The Journal of Biomedical Research, 2025, 39(1): 1-17. DOI: 10.7555/JBR.38.20240119
    [3]Liu Xiaowei, Nakamura Fumihiko. Mechanotransduction, nanotechnology, and nanomedicine[J]. The Journal of Biomedical Research, 2021, 35(4): 284-293. DOI: 10.7555/JBR.34.20200063
    [4]Minbo Zang, Qiao Zhou, Yunfei Zhu, Mingxi Liu, Zuomin Zhou. Effects of chemotherapeutic agent bendamustine for nonhodgkin lymphoma on spermatogenesis in mice[J]. The Journal of Biomedical Research, 2018, 32(6): 442-453. DOI: 10.7555/JBR.31.20170023
    [5]Fengzhen Wang, Mingwan Zhang, Dongsheng Zhang, Yuan Huang, Li Chen, Sunmin Jiang, Kun Shi, Rui Li. Preparation, optimization, and characterization of chitosancoated solid lipid nanoparticles for ocular drug delivery[J]. The Journal of Biomedical Research, 2018, 32(6): 411-423. DOI: 10.7555/JBR.32.20160170
    [6]Anam Akhtar, Scarlet Xiaoyan Wang, Lucy Ghali, Celia Bell, Xuesong Wen. Recent advances in arsenic trioxide encapsulated nanoparticles as drug delivery agents to solid cancers[J]. The Journal of Biomedical Research, 2017, 31(3): 177-188. DOI: 10.7555/JBR.31.20160059
    [7]Oluyomi S. Adeyemi, Faoziyat A. Sulaiman. Evaluation of metal nanoparticles for drug delivery systems[J]. The Journal of Biomedical Research, 2015, 29(2): 145-149. DOI: 10.7555/JBR.28.20130096
    [8]Shaymaa Elsaka, Amr Elnaghy. Effect of addition of chitosan to self-etching primer: antibacterial activity and push-out bond strength to radicular dentin[J]. The Journal of Biomedical Research, 2012, 26(4): 288-294. DOI: 10.7555/JBR.26.20120042
    [9]Shaymaa Elsayed Elsaka, Amr Mohamed Elnaghy. Antibacterial activity of calcium hydroxide combined with chitosan solutions and the outcomes on the bond strength of RealSeal sealer to radicular dentin[J]. The Journal of Biomedical Research, 2012, 26(3): 193-195. DOI: 10.7555/JBR.26.20110136
    [10]Qi Zheng, Yu Yao, Kejun Nan. Weekly intravenous nanoparticle albumin-bound paclitaxel for elderly patients with stage IV non-small-cell lung cancer: a series of 20 cases[J]. The Journal of Biomedical Research, 2012, 26(3): 159-164. DOI: 10.7555/JBR.26.20110106

Catalog

    Article Metrics

    Article views (7886) PDF downloads (249) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return