4.6

CiteScore

2.2

Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Cong-Rong Li, Ruo-Lei Wang, Shi-Ya Xie, Yan-Ru Li, Lei-Lei Gao, Zhi-Xia Yang, Dong Zhang. Fidgetin knockdown and knockout influences female reproduction distinctly in mice[J]. The Journal of Biomedical Research, 2022, 36(4): 269-279. DOI: 10.7555/JBR.36.20220086
Citation: Cong-Rong Li, Ruo-Lei Wang, Shi-Ya Xie, Yan-Ru Li, Lei-Lei Gao, Zhi-Xia Yang, Dong Zhang. Fidgetin knockdown and knockout influences female reproduction distinctly in mice[J]. The Journal of Biomedical Research, 2022, 36(4): 269-279. DOI: 10.7555/JBR.36.20220086

Fidgetin knockdown and knockout influences female reproduction distinctly in mice

  • Microtubule-severing proteins (MTSPs), are a family of proteins which use adenosine triphosphate to sever microtubules. MTSPs have been shown to play an important role in multiple microtubule-involved cellular processes. One member of this family, fidgetin (FIGN), is also involved in male fertility; however, no studies have explored its roles in female fertility. In this study, we found mouse fidgetin is rich within oocyte zona pellucida (ZP) and is the only MTSP member to do so. Fidgetin also appears to interact with all three ZP proteins. These findings prompted us to propose that fidgetin might prevent polyspermy. Results from in vitro maturation oocytes analysis showed that fidgetin knockdown did cause polyspermy. We then deleted all three fidgetin isoforms with CRISPR/Cas9 technologies; however, female mice remained healthy and with normal fertility. Of all mouse MTSPs, only the mRNA level of fidgetin-like 1 (FIGNL1) significantly increased. Therefore, we assert that fidgetin-like 1 compensates fidgetin's roles in fidgetin knockout female mice.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return