3.8

CiteScore

2.4

Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Trupti N. Patel, Pavan Kumar Dhanyamraju. Role of aberrant Sonic hedgehog signaling pathway in cancers and developmental anomalies[J]. The Journal of Biomedical Research, 2022, 36(1): 1-9. DOI: 10.7555/JBR.35.20210139
Citation: Trupti N. Patel, Pavan Kumar Dhanyamraju. Role of aberrant Sonic hedgehog signaling pathway in cancers and developmental anomalies[J]. The Journal of Biomedical Research, 2022, 36(1): 1-9. DOI: 10.7555/JBR.35.20210139

Role of aberrant Sonic hedgehog signaling pathway in cancers and developmental anomalies

More Information
  • Corresponding author:

    Pavan Kumar Dhanyamraju, Department of Pharmacology, Penn State University College of Medicine and Penn State Cancer Institute, Hershey, PA 17033, USA. Tel: +1-6096474712, E-mail: biopan@gmail.com

  • Received Date: August 22, 2021
  • Revised Date: September 08, 2021
  • Accepted Date: September 12, 2021
  • Available Online: December 14, 2021
  • Development is a sophisticated process maintained by various signal transduction pathways, including the Hedgehog (Hh) pathway. Several important functions are executed by the Hh signaling cascade such as organogenesis, tissue regeneration, and tissue homeostasis, among various others. Considering the multiple functions carried out by this pathway, any mutation causing aberrant Hh signaling may lead to myriad developmental abnormalities besides cancers. In the present review article, we explored a wide range of diseases caused by aberrant Hh signaling, including developmental defects and cancers. Finally, we concluded this mini-review with various treatment strategies for Hh-induced diseases.
  • [1]
    Choudhry Z, Rikani AA, Choudhry AM, et al. Sonic hedgehog signalling pathway: a complex network[J]. Ann Neurosci, 2014, 21(1): 28–31. doi: 10.5214/ans.0972.7531.210109
    [2]
    Varjosalo M, Taipale J. Hedgehog: functions and mechanisms[J]. Genes Dev, 2008, 22(18): 2454–2472. doi: 10.1101/gad.1693608
    [3]
    Nüsslein-Volhard C, Wieschaus E. Mutations affecting segment number and polarity in Drosophila[J]. Nature, 1980, 287(5785): 795–801. doi: 10.1038/287795a0
    [4]
    Petrova R, Joyner AL. Roles for Hedgehog signaling in adult organ homeostasis and repair[J]. Development, 2014, 141(18): 3445–3457. doi: 10.1242/dev.083691
    [5]
    Franco HL, Yao HHC. Sex and hedgehog: roles of genes in the hedgehog signaling pathway in mammalian sexual differentiation[J]. Chromosom Res, 2012, 20(1): 247–258. doi: 10.1007/s10577-011-9254-z
    [6]
    Anderson E, Peluso S, Lettice LA, et al. Human limb abnormalities caused by disruption of hedgehog signaling[J]. Trends Genet, 2012, 2(8): 364–373. doi: 10.1016/j.tig.2012.03.012
    [7]
    Singh S, Tokhunts R, Baubet V, et al. Sonic hedgehog mutations identified in holoprosencephaly patients can act in a dominant negative manner[J]. Hum Genet, 2009, 125(1): 95–103. doi: 10.1007/s00439-008-0599-0
    [8]
    Roessler E, Belloni E, Gaudenz K, et al. Mutations in the human Sonic Hedgehog gene cause holoprosencephaly[J]. Nat Genet, 1996, 14(3): 357–360. doi: 10.1038/ng1196-357
    [9]
    Garcia ADR, Han YG, Triplett JW, et al. The elegance of sonic hedgehog: emerging novel functions for a classic morphogen[J]. J Neurosci, 2018, 38(44): 9338–9345. doi: 10.1523/JNEUROSCI.1662-18.2018
    [10]
    Pan A, Chang L, Nguyen A, et al. A review of hedgehog signaling in cranial bone development[J]. Front Physiol, 2013, 4: 61. doi: 10.3389/fphys.2013.00061
    [11]
    Dellovade T, Romer JT, Curran T, et al. The hedgehog pathway and neurological disorders[J]. Annu Rev Neurosci, 2006, 29: 539–563. doi: 10.1146/annurev.neuro.29.051605.112858
    [12]
    Dhanyamraju PK, Patel TN, Dovat S. Medulloblastoma: "onset of the molecular era"[J]. Mol Biol Rep, 2020, 47(12): 9931–9937. doi: 10.1007/s11033-020-05971-w
    [13]
    Skoda AM, Simovic D, Karin V, et al. The role of the Hedgehog signaling pathway in cancer: a comprehensive review[J]. Bosn J Basic Med Sci, 2018, 18(1): 8–20. doi: 10.17305/bjbms.2018.2756
    [14]
    Doheny D, Manore SG, Wong GL, et al. Hedgehog signaling and truncated GLI1 in cancer[J]. Cells, 2020, 9(9): 2114. doi: 10.3390/cells9092114
    [15]
    Wheway G, Nazlamova L, Hancock JT. Signaling through the primary cilium[J]. Front Cell Dev Biol, 2018, 6: 8. doi: 10.3389/fcell.2018.00008
    [16]
    Goetz SC, Ocbina PJR, Anderson KV. The primary cilium as a Hedgehog signal transduction machine[J]. Methods Cell Biol, 2009, 94: 199–222. doi: 10.1016/S0091-679X(08)94010-3
    [17]
    Sasai N, Toriyama M, Kondo T. Hedgehog signal and genetic disorders[J]. Front Genet, 2019, 10: 1103. doi: 10.3389/fgene.2019.01103
    [18]
    Briscoe J, Thérond PP. The mechanisms of Hedgehog signalling and its roles in development and disease[J]. Nat Rev Mol Cell Biol, 2013, 14(7): 416–429. doi: 10.1038/nrm3598
    [19]
    Gupta S, Takebe N, LoRusso P. Review: targeting the Hedgehog pathway in cancer[J]. Ther Adv Med Oncol, 2010, 2(4): 237–250. doi: 10.1177/1758834010366430
    [20]
    Vaillant C, Monard D. SHH pathway and cerebellar development[J]. Cerebellum, 2009, 8(3): 291–301. doi: 10.1007/s12311-009-0094-8
    [21]
    Dahmane N, Altaba ARI. Sonic hedgehog regulates the growth and patterning of the cerebellum[J]. Development, 1999, 126(14): 3089–3100. doi: 10.1242/dev.126.14.3089
    [22]
    Huang SY, Yang JY. Targeting the hedgehog pathway in pediatric medulloblastoma[J]. Cancers (Basel), 2015, 7(4): 2110–2123. doi: 10.3390/cancers7040880
    [23]
    Romer JT, Kimura H, Magdaleno S, et al. Suppression of the Shh pathway using a small molecule inhibitor eliminates medulloblastoma in Ptc1+/−p53−/− mice[J]. Cancer Cell, 2004, 6(3): 229–240. doi: 10.1016/j.ccr.2004.08.019
    [24]
    Millard NE, De Braganca KC. Medulloblastoma[J]. J Child Neurol, 2016, 31(12): 1341–1353. doi: 10.1177/0883073815600866
    [25]
    Northcott PA, Shih DJH, Peacock J, et al. Subgroup-specific structural variation across 1,000 medulloblastoma genomes[J]. Nature, 2012, 488(7409): 49–56. doi: 10.1038/nature11327
    [26]
    Dika E, Scarfì F, Ferracin M, et al. Basal cell carcinoma: a comprehensive review[J]. Int J Mol Sci, 2020, 21: 5572. doi: 10.3390/ijms21155572
    [27]
    Pellegrini C, Maturo MG, Di Nardo L, et al. Understanding the molecular genetics of basal cell carcinoma[J]. Int J Mol Sci, 2017, 18: 2485. doi: 10.3390/ijms18112485
    [28]
    Sari IN, Phi LTH, Jun N, et al. Hedgehog signaling in cancer: a prospective therapeutic target for eradicating cancer stem cells[J]. Cells, 2018, 7(11): 208. doi: 10.3390/cells7110208
    [29]
    Takahashi C, Kanazawa N, Yoshikawa Y, et al. Germline PTCH1 mutations in Japanese basal cell nevus syndrome patients[J]. J Hum Genet, 2009, 54(7): 403–408. doi: 10.1038/jhg.2009.55
    [30]
    Patankar AP, Kshirsagar RA, Dugal A, et al. Gorlin-Goltz syndrome: a series of three cases[J]. Natl J Maxillofac Surg, 2014, 5: 209–212. doi: 10.4103/0975-5950.154839
    [31]
    Saridaki Z, Liloglou T, Zafiropoulos A, et al. Mutational analysis of CDKN2A genes in patients with squamous cell carcinoma of the skin[J]. Br J Dermatol, 2003, 148(4): 638–648. doi: 10.1046/j.1365-2133.2003.05230.x
    [32]
    Peer E, Tesanovic S, Aberger F. Next-generation hedgehog/GLI pathway inhibitors for cancer therapy[J]. Cancers (Basel), 2019, 11(4): 538. doi: 10.3390/cancers11040538
    [33]
    Chen C, Garcia HD, Scheer M, et al. Current and future treatment strategies for rhabdomyosarcoma[J]. Front Oncol, 2019, 9: 1458. doi: 10.3389/fonc.2019.01458
    [34]
    Gleditsch K, Peñas J, Mercer D, et al. Intratumoral translocation positive heterogeneity in pediatric alveolar rhabdomyosarcoma tumors correlates to patient survival prognosis[J]. Front Cell Dev Biol, 2020, 8: 564136. doi: 10.3389/fcell.2020.564136
    [35]
    Roma J, Almazán-Moga A, de Toledo JS, et al. Notch, Wnt, and Hedgehog pathways in rhabdomyosarcoma: from single pathways to an integrated network[J]. Sarcoma, 2012, 2012: 695603. doi: 10.1155/2012/695603
    [36]
    Hahn H, Wojnowski L, Zimmer AM, et al. Rhabdomyosarcomas and radiation hypersensitivity in a mouse model of Gorlin syndrome[J]. Nat Med, 1998, 4(5): 619–622. doi: 10.1038/nm0598-619
    [37]
    MacDonald TJ. Hedgehog pathway in pediatric cancers: they're not just for brain tumors anymore[J]. Am Soc Clin Oncol Educ B, 2012, 32: 605–609. doi: 10.14694/edbook_am.2012.32.61
    [38]
    Bridge JA, Liu J, Qualman SJ, et al. Genomic gains and losses are similar in genetic and histologic subsets of rhabdomyosarcoma, whereas amplification predominates in embryonal with anaplasia and alveolar subtypes[J]. Genes Chromosom Cancer, 2002, 33(3): 310–321. doi: 10.1002/gcc.10026
    [39]
    Bridge JA, Liu J, Weibolt V, et al. Novel genomic imbalances in embryonal rhabdomyosarcoma revealed by comparative genomic hybridization and fluorescence in situ hybridization: an intergroup rhabdomyosarcoma study[J]. Genes Chromosom Cancer, 2000, 27(4): 337–344. doi: 10.1002/(SICI)1098-2264(200004)27:4<337:AID-GCC1>3.0.CO;2-1
    [40]
    Calzada-Wack J, Kappler R, Schnitzbauer U, et al. Unbalanced overexpression of the mutant allele in murine Patched mutants[J]. Carcinogenesis, 2002, 23(5): 727–733. doi: 10.1093/carcin/23.5.727
    [41]
    Oue T, Yoneda A, Uehara S, et al. Increased expression of the hedgehog signaling pathway in pediatric solid malignancies[J]. J Pediatr Surg, 2010, 45(2): 387–392. doi: 10.1016/j.jpedsurg.2009.10.081
    [42]
    Zibat A, Missiaglia E, Rosenberger A, et al. Activation of the hedgehog pathway confers a poor prognosis in embryonal and fusion gene-negative alveolar rhabdomyosarcoma[J]. Oncogene, 2010, 29(48): 6323–6330. doi: 10.1038/onc.2010.368
    [43]
    Almazán-Moga A, Zarzosa P, Molist C, et al. Ligand-dependent hedgehog pathway activation in rhabdomyosarcoma: the oncogenic role of the ligands[J]. Br J Cancer, 2017, 117(9): 1314–1325. doi: 10.1038/bjc.2017.305
    [44]
    Huang F, Zhuan-Sun Y, Zhuang Y, et al. Inhibition of hedgehog signaling depresses self-renewal of pancreatic cancer stem cells and reverses chemoresistance[J]. Int J Oncol, 2012, 41(5): 1707–1714. doi: 10.3892/ijo.2012.1597
    [45]
    Jones S, Zhang X, Parsons DW, et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses[J]. Science, 2008, 321(5897): 1801–1806. doi: 10.1126/science.1164368
    [46]
    Feldmann G, Dhara S, Fendrich V, et al. Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases: a new paradigm for combination therapy in solid cancers[J]. Cancer Res, 2007, 67(5): 2187–2196. doi: 10.1158/0008-5472.CAN-06-3281
    [47]
    Gu D, Schlotman KE, Xie J. Deciphering the role of hedgehog signaling in pancreatic cancer[J]. J Biomed Res, 2016, 30(5): 353–360. doi: 10.7555/JBR.30.20150107
    [48]
    Hogenson TL, Olson RLO, Fernandez-Zapico ME. Hedgehog signaling plays a dual role in pancreatic carcinogenesis[M]//Neoptolemos JP, Urrutia R, Abbruzzese JL, et al. Pancreatic Cancer. New York: Springer, 2018: 409–430.
    [49]
    Rhim AD, Oberstein PE, Thomas DH, et al. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma[J]. Cancer Cell, 2015, 25(6): 735–747. doi: 10.1016/j.ccr.2014.04.021
    [50]
    Bailey JM, Swanson BJ, Hamada T, et al. Sonic hedgehog promotes desmoplasia in pancreatic cancer[J]. Clin Cancer Res, 2008, 14(19): 5995–6004. doi: 10.1158/1078-0432.CCR-08-0291
    [51]
    Yauch RL, Gould SE, Scales SJ, et al. A paracrine requirement for hedgehog signalling in cancer[J]. Nature, 2008, 455(7211): 406–410. doi: 10.1038/nature07275
    [52]
    Hwang RF, Moore T, Arumugam T, et al. Cancer-associated stromal fibroblasts promote pancreatic tumor progression[J]. Cancer Res, 2008, 68(3): 918–926. doi: 10.1158/0008-5472.CAN-07-5714
    [53]
    Lee JJ, Perera RM, Wang H, et al. Stromal response to Hedgehog signaling restrains pancreatic cancer progression[J]. Proc Natl Acad Sci U S A, 2014, 111(30): E3091–E3100. doi: 10.1073/pnas.1411679111
    [54]
    Bailey JM, Mohr AM, Hollingsworth MA. Sonic hedgehog paracrine signaling regulates metastasis and lymphangiogenesis in pancreatic cancer[J]. Oncogene, 2009, 28(40): 3513–3525. doi: 10.1038/onc.2009.220
    [55]
    Ma Y, Yu W, Shrivastava A, et al. Sanguinarine inhibits pancreatic cancer stem cell characteristics by inducing oxidative stress and suppressing sonic hedgehog-Gli-Nanog pathway[J]. Carcinogenesis, 2017, 38(10): 1047–1056. doi: 10.1093/carcin/bgx070
    [56]
    Houghton CA. Sulforaphane: its "coming of age" as a clinically relevant nutraceutical in the prevention and treatment of chronic disease[J]. Oxid Med Cell Longev, 2019, 2019: 2716870. doi: 10.1155/2019/2716870
    [57]
    Juge N, Mithen RF, Traka M. Molecular basis for chemoprevention by sulforaphane: a comprehensive review[J]. Cell Mol Life Sci, 2007, 64(9): 1105–1127. doi: 10.1007/s00018-007-6484-5
    [58]
    Li SH, Fu J, Watkins DN, et al. Sulforaphane regulates self-renewal of pancreatic cancer stem cells through the modulation of Sonic hedgehog-GLI pathway[J]. Mol Cell Biochem, 2013, 373(1–2): 217–227. doi: 10.1007/s11010-012-1493-6
    [59]
    Liu H, Dong Y, Gao Y, et al. The fascinating effects of baicalein on cancer: a review[J]. Int J Mol Sci, 2016, 17(10): 1681. doi: 10.3390/ijms17101681
    [60]
    Song L, Chen X, Wang P, et al. Effects of baicalein on pancreatic cancer stem cells via modulation of sonic Hedgehog pathway[J]. Acta Biochim Biophys Sin (Shanghai), 2018, 50(6): 586–596. doi: 10.1093/abbs/gmy045
    [61]
    Yao J, An Y, Wei J, et al. Cyclopamine reverts acquired chemoresistance and down-regulates cancer stem cell markers in pancreatic cancer cell lines[J]. Swiss Med Wkly, 2011, 141: w13208. doi: 10.4414/smw.2011.13208
    [62]
    Gongal PA, French CR, Waskiewicz AJ. Aberrant forebrain signaling during early development underlies the generation of holoprosencephaly and coloboma[J]. Biochim Biophys Acta (BBA)-Mol Basis Dis, 2011, 1812(3): 390–401. doi: 10.1016/j.bbadis.2010.09.005
    [63]
    Dubourg C, Bendavid C, Pasquier L, et al. Holoprosencephaly[J]. Orphanet J Rare Dis, 2007, 2: 8. doi: 10.1186/1750-1172-2-8
    [64]
    Bertrand N, Dahmane N. Sonic hedgehog signaling in forebrain development and its interactions with pathways that modify its effects[J]. Trends Cell Biol, 2006, 16(11): 597–605. doi: 10.1016/j.tcb.2006.09.007
    [65]
    Jeong Y, Epstein DJ. Distinct regulators of Shh transcription in the floor plate and notochord indicate separate origins for these tissues in the mouse node[J]. Development, 2003, 130(16): 3891–3902. doi: 10.1242/dev.00590
    [66]
    Goodrich LV, Jung D, Higgins KM, et al. Overexpression of ptc1 inhibits induction of Shh target genes and prevents normal patterning in the neural tube[J]. Dev Biol, 1999, 211(2): 323–334. doi: 10.1006/dbio.1999.9311
    [67]
    Roessler E, El-Jaick KB, Dubourg C, et al. The mutational spectrum of holoprosencephaly-associated changes within the SHH gene in humans predicts loss-of-function through either key structural alterations of the ligand or its altered synthesis[J]. Hum Mutat, 2009, 30(10): E921–E935. doi: 10.1002/humu.21090
    [68]
    Petryk A, Graf D, Marcucio R. Holoprosencephaly: signaling interactions between the brain and the face, the environment and the genes, and the phenotypic variability in animal models and humans[J]. Wiley Interdiscip Rev Dev Biol, 2015, 4(1): 17–32. doi: 10.1002/wdev.161
    [69]
    McCarthy RA, Argraves WS. Megalin and the neurodevelopmental biology of sonic hedgehog and retinol[J]. J Cell Sci, 2003, 116(6): 955–960. doi: 10.1242/jcs.00313
    [70]
    Michaud EJ, Yoder BK. The primary cilium in cell signaling and cancer[J]. Cancer Res, 2006, 66(13): 6463–6467. doi: 10.1158/0008-5472.CAN-06-0462
    [71]
    Waters AM, Beales PL. Ciliopathies: an expanding disease spectrum[J]. Pediatr Nephrol, 2011, 26(7): 1039–1056. doi: 10.1007/s00467-010-1731-7
    [72]
    Hildebrandt F, Attanasio M, Otto E. Nephronophthisis: disease mechanisms of a ciliopathy[J]. J Am Soc Nephrol, 2009, 20(1): 23–35. doi: 10.1681/ASN.2008050456
    [73]
    Wolf MTF, Hildebrandt F. Nephronophthisis[J]. Pediatr Nephrol, 2011, 26(2): 181–194. doi: 10.1007/s00467-010-1585-z
    [74]
    Srivastava S, Molinari E, Raman S, et al. Many genes-one disease? Genetics of nephronophthisis (NPHP) and NPHP-associated disorders[J]. Front Pediatr, 2018, 5: 287. doi: 10.3389/fped.2017.00287
    [75]
    Attanasio M, Uhlenhaut NH, Sousa VH, et al. Loss of GLIS2 causes nephronophthisis in humans and mice by increased apoptosis and fibrosis[J]. Nat Genet, 2007, 39(8): 1018–1024. doi: 10.1038/ng2072
    [76]
    Adamiok-Ostrowska A, Piekiełko-Witkowska A. Ciliary genes in renal cystic diseases[J]. Cells, 2020, 9(4): 907. doi: 10.3390/cells9040907
    [77]
    Damerla RR, Cui C, Gabriel GC, et al. Novel Jbts17 mutant mouse model of Joubert syndrome with cilia transition zone defects and cerebellar and other ciliopathy related anomalies[J]. Hum Mol Genet, 2015, 24(14): 3994–4005. doi: 10.1093/hmg/ddv137
    [78]
    Toriyama M, Lee C, Wallingford JB. The ciliopathy-associated CPLANE proteins direct basal body recruitment of intraflagellar transport machinery[J]. Nat Genet, 2016, 48(6): 648–656. doi: 10.1038/ng.3558
    [79]
    Song B, Haycraft CJ, Seo HS, et al. Development of the post-natal growth plate requires intraflagellar transport proteins[J]. Dev Biol, 2007, 305(1): 202–216. doi: 10.1016/j.ydbio.2007.02.003
    [80]
    Tran PV, Haycraft CJ, Besschetnova TY, et al. THM1 negatively modulates mouse sonic hedgehog signal transduction and affects retrograde intraflagellar transport in cilia[J]. Nat Genet, 2016, 40(4): 403–410. doi: 10.1038/ng.105
    [81]
    Liu A, Wang B, Niswander LA. Mouse intraflagellar transport proteins regulate both the activator and repressor functions of Gli transcription factors[J]. Development, 2005, 132(13): 3103–3111. doi: 10.1242/dev.01894
    [82]
    Society for Maternal-Fetal Medicine (SMFM), Monteagudo A. Holoprosencephaly[J]. Am J Obstet Gynecol, 2020, 223(6): B13–B16. doi: 10.1016/j.ajog.2020.08.178
    [83]
    Pallangyo P, Lyimo F, Nicholaus P, et al. Semilobar holoprosencephaly in a 12-month-old baby boy born to a primigravida patient with type 1 diabetes mellitus: a case report[J]. J Med Case Rep, 2016, 10(1): 358. doi: 10.1186/s13256-016-1141-y
    [84]
    Tran BAP, Alexander T, Somani AK. Biochemical pathways and targeted therapies in basal cell carcinoma: a systematic review[J]. J Surg Dermatol, 2016, 2(1): 23–34. doi: 10.18282/jsd.v2.i1.64
    [85]
    Jain S, Song R, Xie J. Sonidegib: mechanism of action, pharmacology, and clinical utility for advanced basal cell carcinomas[J]. Onco Targets Ther, 2017, 10: 1645–1653. doi: 10.2147/OTT.S130910
  • Related Articles

    [1]Fei Qin, Hao Yu, Changrong Xu, Huihui Chen, Jianling Bai. Safety of axitinib and sorafenib monotherapy for patients with renal cell carcinoma: a meta-analysis[J]. The Journal of Biomedical Research, 2018, 32(1): 30-38. DOI: 10.7555/JBR.32.20170080
    [2]Xu Hu, Linfei Jiang, Chenhui Tang, Yuehong Ju, Li Jiu, Yongyue Wei, Li Guo, Yang Zhao. Association of three single nucleotide polymorphisms of ESR1 with breast cancer susceptibility: a meta-analysis[J]. The Journal of Biomedical Research, 2017, 31(3): 213-225. DOI: 10.7555/JBR.31.20160087
    [3]Wei Qian, Kuanfeng Xu, Wenting Jia, Ling Lan, Xuqin Zheng, Xueyang Yang, Dai Cui. Association between TSHR gene polymorphism and the risk of Graves' disease: a meta-analysis[J]. The Journal of Biomedical Research, 2016, 30(6): 466-475. DOI: 10.7555/JBR.30.20140144
    [4]Peng Zou, Lin Zhao, Haitao Xu, Ping Chen, Aihua Gu, Ning Liu, Peng Zhao, Ailin Lu. Hsa-mir-499 rs3746444 polymorphism and cancer risk: a meta-analysis[J]. The Journal of Biomedical Research, 2012, 26(4): 253-259. DOI: 10.7555/JBR.26.20110122
    [5]Zhiqiang Yin, Jiali Xu, Dan Luo. Efficacy and tolerance of tacrolimus and pimecrolimus for atopic dermatitis: a meta-analysis[J]. The Journal of Biomedical Research, 2011, 25(6): 385-391. DOI: 10.1016/S1674-8301(11)60051-1
    [6]Liang Zong, Ping Chen, Yinbing Chen, Guohao Shi. Pouch Roux-en-Y vs No Pouch Roux-en-Y following total gastrectomy: a meta-analysis based on 12 studies[J]. The Journal of Biomedical Research, 2011, 25(2): 90-99. DOI: 10.1016/S1674-8301(11)60011-0
    [7]Lifeng Zhang, Ning Shao, Qianqian Yu, Lixin Hua, Yuanyuan Mi, Ninghan Feng. Association between p53 Pro72Arg polymorphism and prostate cancer risk: a meta-analysis[J]. The Journal of Biomedical Research, 2011, 25(1): 25-32. DOI: 10.1016/S1674-8301(11)60003-1
    [8]Donghua Li, Jie Wu. Association of the MTHFR C677T polymorphism and bone mineral density in postmenopausal women: a meta-analysis[J]. The Journal of Biomedical Research, 2010, 24(6): 417-423. DOI: 10.1016/S1674-8301(10)60056-5
    [9]Yuanyuan Mi, Qianqian Yu, Zhichao Min, Bin Xu, Lifeng Zhang, Wei Zhang, Ninghan Feng, Lixin Hua. Arg462Gln and Asp541Glu polymorphisms in ribonuclease L and prostate cancer risk: a meta-analysis[J]. The Journal of Biomedical Research, 2010, 24(5): 365-373. DOI: 10.1016/S1674-8301(10)60049-8
    [10]Bingbing Wei, Yunyun Zhang, Bo Xi, Junkai Chang, Jinming Bai, Jiantang Su. CYP17 T27C polymorphism and prostate cancer risk:a meta-analysis based on 31 studies[J]. The Journal of Biomedical Research, 2010, 24(3): 233-241.
  • Cited by

    Periodical cited type(49)

    1. Lee SB, Hong KW, Park B, et al. Impact of genetic markers related to hyper-HDL cholesterol on the prevalence of myocardial infarction: a KoGES study. J Lipid Res, 2025, 66(4): 100777. DOI:10.1016/j.jlr.2025.100777
    2. Liu Y, Hou W, Gao T, et al. Influence and role of polygenic risk score in the development of 32 complex diseases. J Glob Health, 2025, 15: 04071. DOI:10.7189/jogh.15.04071
    3. Nawade B, Shim SH, Chu SH, et al. Integrative transcriptogenomic analyses reveal the regulatory network underlying rice eating and cooking quality and identify a role for alpha-globulin in modulating starch and sucrose metabolism. Plant Commun, 2025, 6(5): 101287. DOI:10.1016/j.xplc.2025.101287
    4. Lee SB, Hong KW, Park B, et al. Impact of genetic markers related to hyper-HDL cholesterol on the prevalence of myocardial infarction: a KoGES study. J Lipid Res, 2025, 66(4): 100777. DOI:10.1016/j.jlr.2025.100777
    5. Zhang S, Jiang Z, Zeng P. Incorporating genetic similarity of auxiliary samples into eGene identification under the transfer learning framework. J Transl Med, 2024, 22(1): 258. DOI:10.1186/s12967-024-05053-6
    6. Kang HY, Choe EK. Clinical Strategies in Gene Screening Counseling for the Healthy General Population. Korean J Fam Med, 2024, 45(2): 61-68. DOI:10.4082/kjfm.23.0254
    7. Lee SB, Choi JE, Hong KW, et al. Genetic Variants Linked to Myocardial Infarction in Individuals with Non-Alcoholic Fatty Liver Disease and Their Potential Interaction with Dietary Patterns. Nutrients, 2024, 16(5): 602. DOI:10.3390/nu16050602
    8. Zhang S, Jiang Z, Zeng P. Incorporating genetic similarity of auxiliary samples into eGene identification under the transfer learning framework. J Transl Med, 2024, 22(1): 258. DOI:10.1186/s12967-024-05053-6
    9. Zhang S, Jiang Z, Zeng P. Incorporating genetic similarity of auxiliary samples into eGene identification under the transfer learning framework. J Transl Med, 2024, 22(1): 258. DOI:10.1186/s12967-024-05053-6
    10. Kang HY, Choe EK. Clinical Strategies in Gene Screening Counseling for the Healthy General Population. Korean J Fam Med, 2024, 45(2): 61-68. DOI:10.4082/kjfm.23.0254
    11. Lee SB, Choi JE, Hong KW, et al. Genetic Variants Linked to Myocardial Infarction in Individuals with Non-Alcoholic Fatty Liver Disease and Their Potential Interaction with Dietary Patterns. Nutrients, 2024, 16(5): 602. DOI:10.3390/nu16050602
    12. Seo H, Park JH, Hwang JT, et al. Epigenetic Profiling of Type 2 Diabetes Mellitus: An Epigenome-Wide Association Study of DNA Methylation in the Korean Genome and Epidemiology Study. Genes (Basel), 2023, 14(12): 2207. DOI:10.3390/genes14122207
    13. Seo H, Park JH, Hwang JT, et al. Epigenetic Profiling of Type 2 Diabetes Mellitus: An Epigenome-Wide Association Study of DNA Methylation in the Korean Genome and Epidemiology Study. Genes (Basel), 2023, 14(12): 2207. DOI:10.3390/genes14122207
    14. Seo H, Park JH, Hwang JT, et al. Epigenetic Profiling of Type 2 Diabetes Mellitus: An Epigenome-Wide Association Study of DNA Methylation in the Korean Genome and Epidemiology Study. Genes (Basel), 2023, 14(12): 2207. DOI:10.3390/genes14122207
    15. Qiao J, Shao Z, Wu Y, et al. Detecting associated genes for complex traits shared across East Asian and European populations under the framework of composite null hypothesis testing. J Transl Med, 2022, 20(1): 424. DOI:10.1186/s12967-022-03637-8
    16. Padilla-Martinez F, Szczerbiński Ł, Citko A, et al. Testing the Utility of Polygenic Risk Scores for Type 2 Diabetes and Obesity in Predicting Metabolic Changes in a Prediabetic Population: An Observational Study. Int J Mol Sci, 2022, 23(24): 16081. DOI:10.3390/ijms232416081
    17. Muneeb M, Feng S, Henschel A. Transfer learning for genotype-phenotype prediction using deep learning models. BMC Bioinformatics, 2022, 23(1): 511. DOI:10.1186/s12859-022-05036-8
    18. Roh H. A genome-wide association study of the occurrence of genetic variations in Edwardsiella piscicida, Vibrio harveyi, and Streptococcus parauberis under stressed environments. J Fish Dis, 2022, 45(9): 1373-1388. DOI:10.1111/jfd.13668
    19. Zhang M, Qiao J, Zhang S, et al. Exploring the association between birthweight and breast cancer using summary statistics from a perspective of genetic correlation, mediation, and causality. J Transl Med, 2022, 20(1): 227. DOI:10.1186/s12967-022-03435-2
    20. Zhang M, Qiao J, Zhang S, et al. Exploring the association between birthweight and breast cancer using summary statistics from a perspective of genetic correlation, mediation, and causality. J Transl Med, 2022, 20(1): 227. DOI:10.1186/s12967-022-03435-2
    21. Padilla-Martinez F, Szczerbiński Ł, Citko A, et al. Testing the Utility of Polygenic Risk Scores for Type 2 Diabetes and Obesity in Predicting Metabolic Changes in a Prediabetic Population: An Observational Study. Int J Mol Sci, 2022, 23(24): 16081. DOI:10.3390/ijms232416081
    22. Muneeb M, Feng S, Henschel A. Transfer learning for genotype-phenotype prediction using deep learning models. BMC Bioinformatics, 2022, 23(1): 511. DOI:10.1186/s12859-022-05036-8
    23. O'Rielly DD, Rahman P. Genetic Epidemiology of Complex Phenotypes. Methods Mol Biol, 2021, 2249: 335-367. DOI:10.1007/978-1-0716-1138-8_19
    24. Monnot S, Desaint H, Mary-Huard T, et al. Deciphering the Genetic Architecture of Plant Virus Resistance by GWAS, State of the Art and Potential Advances. Cells, 2021, 10(11): 3080. DOI:10.3390/cells10113080
    25. Lu H, Zhang J, Jiang Z, et al. Detection of Genetic Overlap Between Rheumatoid Arthritis and Systemic Lupus Erythematosus Using GWAS Summary Statistics. Front Genet, 2021, 12: 656545. DOI:10.3389/fgene.2021.656545
    26. Petersen KS, Kris-Etherton PM, McCabe GP, et al. Perspective: Planning and Conducting Statistical Analyses for Human Nutrition Randomized Controlled Trials: Ensuring Data Quality and Integrity. Adv Nutr, 2021, 12(5): 1610-1624. DOI:10.1093/advances/nmab045
    27. Dennis JK, Sealock JM, Straub P, et al. Clinical laboratory test-wide association scan of polygenic scores identifies biomarkers of complex disease. Genome Med, 2021, 13(1): 6. DOI:10.1186/s13073-020-00820-8
    28. Lu H, Wei Y, Jiang Z, et al. Integrative eQTL-weighted hierarchical Cox models for SNP-set based time-to-event association studies. J Transl Med, 2021, 19(1): 418. DOI:10.1186/s12967-021-03090-z
    29. Lu H, Qiao J, Shao Z, et al. A comprehensive gene-centric pleiotropic association analysis for 14 psychiatric disorders with GWAS summary statistics. BMC Med, 2021, 19(1): 314. DOI:10.1186/s12916-021-02186-z
    30. Mkize N, Maiwashe A, Dzama K, et al. Suitability of GWAS as a Tool to Discover SNPs Associated with Tick Resistance in Cattle: A Review. Pathogens, 2021, 10(12): 1604. DOI:10.3390/pathogens10121604
    31. McGuire D, Jiang Y, Liu M, et al. Model-based assessment of replicability for genome-wide association meta-analysis. Nat Commun, 2021, 12(1): 1964. DOI:10.1038/s41467-021-21226-z
    32. Mkize N, Maiwashe A, Dzama K, et al. Suitability of GWAS as a Tool to Discover SNPs Associated with Tick Resistance in Cattle: A Review. Pathogens, 2021, 10(12): 1604. DOI:10.3390/pathogens10121604
    33. McGuire D, Jiang Y, Liu M, et al. Model-based assessment of replicability for genome-wide association meta-analysis. Nat Commun, 2021, 12(1): 1964. DOI:10.1038/s41467-021-21226-z
    34. Yamamoto A, Shibuya T. More practical differentially private publication of key statistics in GWAS. Bioinform Adv, 2021, 1(1): vbab004. DOI:10.1093/bioadv/vbab004
    35. Jin T, Youn J, Kim AN, et al. Interactions of Habitual Coffee Consumption by Genetic Polymorphisms with the Risk of Prediabetes and Type 2 Diabetes Combined. Nutrients, 2020, 12(8): 2228. DOI:10.3390/nu12082228
    36. Chen H, Wang T, Yang J, et al. Improved Detection of Potentially Pleiotropic Genes in Coronary Artery Disease and Chronic Kidney Disease Using GWAS Summary Statistics. Front Genet, 2020, 11: 592461. DOI:10.3389/fgene.2020.592461
    37. Himmerich H, Bentley J, Kan C, et al. Genetic risk factors for eating disorders: an update and insights into pathophysiology. Ther Adv Psychopharmacol, 2019, 9: 2045125318814734. DOI:10.1177/2045125318814734
    38. Sanyal N, Lo MT, Kauppi K, et al. GWASinlps: non-local prior based iterative SNP selection tool for genome-wide association studies. Bioinformatics, 2019, 35(1): 1-11. DOI:10.1093/bioinformatics/bty472
    39. Brinster R, Köttgen A, Tayo BO, et al. Control procedures and estimators of the false discovery rate and their application in low-dimensional settings: an empirical investigation. BMC Bioinformatics, 2018, 19(1): 78. DOI:10.1186/s12859-018-2081-x
    40. Brinster R, Köttgen A, Tayo BO, et al. Control procedures and estimators of the false discovery rate and their application in low-dimensional settings: an empirical investigation. BMC Bioinformatics, 2018, 19(1): 78. DOI:10.1186/s12859-018-2081-x
    41. Zeng P, Wang T, Huang S. Cis-SNPs Set Testing and PrediXcan Analysis for Gene Expression Data using Linear Mixed Models. Sci Rep, 2017, 7(1): 15237. DOI:10.1038/s41598-017-15055-8
    42. Zeng P, Zhou X, Huang S. Prediction of gene expression with cis-SNPs using mixed models and regularization methods. BMC Genomics, 2017, 18(1): 368. DOI:10.1186/s12864-017-3759-6
    43. Zeng P, Zhou X, Huang S. Prediction of gene expression with cis-SNPs using mixed models and regularization methods. BMC Genomics, 2017, 18(1): 368. DOI:10.1186/s12864-017-3759-6
    44. Zeng P, Wang T, Huang S. Cis-SNPs Set Testing and PrediXcan Analysis for Gene Expression Data using Linear Mixed Models. Sci Rep, 2017, 7(1): 15237. DOI:10.1038/s41598-017-15055-8
    45. Zhang Q, Zhao Y, Zhang R, et al. A Comparative Study of Five Association Tests Based on CpG Set for Epigenome-Wide Association Studies. PLoS One, 2016, 11(6): e0156895. DOI:10.1371/journal.pone.0156895
    46. Umehara H, Numata S, Tajima A, et al. Calcium Signaling Pathway Is Associated with the Long-Term Clinical Response to Selective Serotonin Reuptake Inhibitors (SSRI) and SSRI with Antipsychotics in Patients with Obsessive-Compulsive Disorder. PLoS One, 2016, 11(6): e0157232. DOI:10.1371/journal.pone.0157232
    47. Gasc C, Peyretaillade E, Peyret P. Sequence capture by hybridization to explore modern and ancient genomic diversity in model and nonmodel organisms. Nucleic Acids Res, 2016, 44(10): 4504-18. DOI:10.1093/nar/gkw309
    48. Zhang Q, Zhao Y, Zhang R, et al. A Comparative Study of Five Association Tests Based on CpG Set for Epigenome-Wide Association Studies. PLoS One, 2016, 11(6): e0156895. DOI:10.1371/journal.pone.0156895
    49. Gasc C, Peyretaillade E, Peyret P. Sequence capture by hybridization to explore modern and ancient genomic diversity in model and nonmodel organisms. Nucleic Acids Res, 2016, 44(10): 4504-18. DOI:10.1093/nar/gkw309

    Other cited types(0)

Catalog

    Corresponding author: Pavan Kumar Dhanyamraju, biopan@gmail.com

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Article Metrics

    Article views (1282) PDF downloads (171) Cited by(49)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return