• ISSN 1674-8301
  • CN 32-1810/R
Volume 35 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
Reimhult Erik, Virk Mudassar Mumtaz. Hybrid lipopolymer vesicle drug delivery and release systems[J]. The Journal of Biomedical Research, 2021, 35(4): 301-309. doi: 10.7555/JBR.35.20200206
Citation: Reimhult Erik, Virk Mudassar Mumtaz. Hybrid lipopolymer vesicle drug delivery and release systems[J]. The Journal of Biomedical Research, 2021, 35(4): 301-309. doi: 10.7555/JBR.35.20200206

Hybrid lipopolymer vesicle drug delivery and release systems

doi: 10.7555/JBR.35.20200206
More Information
  • Corresponding author: Erik Reimhult, Department of Nanobiotechnology, Institute for Biologically Inspired Materials, University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190 Vienna, Austria. Tel/Fax: +43-1-47654-80211/+43-1-47891-12, E-mail: erik.reimhult@boku.ac.at
  • Received: 2020-12-07
  • Revised: 2021-01-04
  • Accepted: 2021-01-26
  • Published: 2021-03-23
  • Issue Date: 2021-07-28
  • Hybrid lipopolymer vesicles are membrane vesicles that can be self-assembled on both the micro- and nano-scale. On the nanoscale, they are potential novel smart materials for drug delivery systems that could combine the relative strengths of liposome and polymersome drug delivery systems without their respective weaknesses. However, little is known about their properties and how they could be tailored. Currently, most methods of investigation are limited to the microscale. Here we provide a brief review on hybrid vesicle systems with a specific focus on recent developments demonstrating that nanoscale hybrid vesicles have different properties from their macroscale counterparts.

     

  • loading
  • [1]
    Massing U, Fuxius S. Liposomal formulations of anticancer drugs: selectivity and effectiveness[J]. Drug Resist Updat, 2000, 3(3): 171–177. doi: 10.1054/drup.2000.0138
    [2]
    Barenholz Y. Doxil® — The first FDA-approved nano-drug: lessons learned[J]. J Control Release, 2012, 160(2): 117–134. doi: 10.1016/j.jconrel.2012.03.020
    [3]
    Mohammadi M, Taghavi S, Abnous K, et al. Hybrid vesicular drug delivery systems for cancer therapeutics[J]. Adv Funct Mater, 2018, 28(36): 1802136. doi: 10.1002/adfm.201802136
    [4]
    Sigismund S, Avanzato D, Lanzetti L. Emerging functions of the EGFR in cancer[J]. Mol Oncol, 2018, 12(1): 3–20. doi: 10.1002/1878-0261.12155
    [5]
    Allen TM. Ligand-targeted therapeutics in anticancer therapy[J]. Nat Rev Cancer, 2002, 2(10): 750–763. doi: 10.1038/nrc903
    [6]
    Wang W, Cheng D, Gong F, et al. Design of multifunctional micelle for tumor-targeted intracellular drug release and fluorescent imaging[J]. Adv Mater, 2012, 24(1): 115–120. doi: 10.1002/adma.201104066
    [7]
    Guo X, Li D, Yang G, et al. Thermo-triggered drug release from actively targeting polymer micelles[J]. ACS Appl Mater Interfaces, 2014, 6(11): 8549–8559. doi: 10.1021/am501422r
    [8]
    Guo X, Shi C, Wang J, et al. PH-triggered intracellular release from actively targeting polymer micelles[J]. Biomaterials, 2013, 34(18): 4544–4554. doi: 10.1016/j.biomaterials.2013.02.071
    [9]
    Shi C, Guo X, Qu Q, et al. Actively targeted delivery of anticancer drug to tumor cells by redox-responsive star-shaped micelles[J]. Biomaterials, 2014, 35(30): 8711–8722. doi: 10.1016/j.biomaterials.2014.06.036
    [10]
    Zensi A, Begley D, Pontikis C, et al. Albumin nanoparticles targeted with Apo E enter the CNS by transcytosis and are delivered to neurones[J]. J Control Release, 2009, 137(1): 78–86. doi: 10.1016/j.jconrel.2009.03.002
    [11]
    Ross JS, Schenkein DP, Pietrusko R, et al. Targeted therapies for cancer 2004[J]. Am J Clin Pathol, 2004, 122(4): 598–609. doi: 10.1309/5CWPU41AFR1VYM3F
    [12]
    Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting[J]. Adv Enzyme Regul, 2001, 41(1): 189–207. doi: 10.1016/S0065-2571(00)00013-3
    [13]
    Torchilin VP. Recent advances with liposomes as pharmaceutical carriers[J]. Nat Rev Drug Discov, 2005, 4(2): 145–160. doi: 10.1038/nrd1632
    [14]
    Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery[J]. Nat Mater, 2013, 12(11): 991–1003. doi: 10.1038/nmat3776
    [15]
    Barhoumi A, Liu Q, Kohane DS. Ultraviolet light-mediated drug delivery: principles, applications, and challenges[J]. J Control Release, 2015, 219: 31–42. doi: 10.1016/j.jconrel.2015.07.018
    [16]
    Bixner O, Kurzhals S, Virk M, et al. Triggered release from thermoresponsive polymersomes with superparamagnetic membranes[J]. Materials, 2016, 9(1): 29. doi: 10.3390/ma9010029
    [17]
    Kamat NP, Robbins GP, Rawson J, et al. A generalized system for photoresponsive membrane rupture in polymersomes[J]. Adv Funct Mater, 2010, 20(16): 2588–2596. doi: 10.1002/adfm.201000659
    [18]
    Li MH, Keller P. Stimuli-responsive polymer vesicles[J]. Soft Matter, 2009, 5(5): 927–937. doi: 10.1039/b815725a
    [19]
    Mabrouk E, Cuvelier D, Brochard-Wyart F, et al. Bursting of sensitive polymersomes induced by curling[J]. Proc Natl Acad Sci U S A, 2009, 106(18): 7294–7298. doi: 10.1073/pnas.0813157106
    [20]
    Mabrouk E, Bonneau S, Jia L, et al. Photosensitization of polymervesicles: a multistep chemical process deciphered by micropipette manipulation[J]. Soft Matter, 2010, 6(19): 4863–4875. doi: 10.1039/c002065f
    [21]
    Chemin M, Brun PM, Lecommandoux S, et al. Hybrid polymer/lipid vesicles: fine control of the lipid and polymer distribution in the binary membrane[J]. Soft Matter, 2012, 8(10): 2867–2874. doi: 10.1039/c2sm07188f
    [22]
    Ruysschaert T, Sonnen AFP, Haefele T, et al. Hybrid nanocapsules: interactions of ABA block copolymers with liposomes[J]. J Am Chem Soc, 2005, 127(17): 6242–6247. doi: 10.1021/ja043600x
    [23]
    Olubummo A, Schulz M, Lechner BD, et al. Controlling the localization of polymer-functionalized nanoparticles in mixed lipid/polymer membranes[J]. ACS Nano, 2012, 6(10): 8713–8727. doi: 10.1021/nn3023602
    [24]
    Schulz M, Glatte D, Meister A, et al. Hybrid lipid/polymer giant unilamellar vesicles: effects of incorporated biocompatible PIB-PEO block copolymers on vesicle properties[J]. Soft Matter, 2011, 7(18): 8100–8110. doi: 10.1039/c1sm05725a
    [25]
    Cheng Z, Elias DR, Kamat NP, et al. Improved tumor targeting of polymer-based nanovesicles using polymer-lipid blends[J]. Bioconjugate Chem, 2011, 22(10): 2021–2029. doi: 10.1021/bc200214g
    [26]
    Cheng Z, Tsourkas A. Paramagnetic porous polymersomes[J]. Langmuir, 2008, 24(15): 8169–8173. doi: 10.1021/la801027q
    [27]
    Nam J, Vanderlick TK, Beales PA. Formation and dissolution of phospholipid domains with varying textures in hybrid lipo-polymersomes[J]. Soft Matter, 2012, 8(30): 7982–7988. doi: 10.1039/c2sm25646k
    [28]
    Nam J, Beales PA, Vanderlick TK. Giant phospholipid/block copolymer hybrid vesicles: mixing behavior and domain formation[J]. Langmuir, 2011, 27(1): 1–6. doi: 10.1021/la103428g
    [29]
    Virk MM, Reimhult E. Phospholipase A2-induced degradation and release from lipid-containing polymersomes[J]. Langmuir, 2018, 34(1): 395–405. doi: 10.1021/acs.langmuir.7b03893
    [30]
    Lim SK, de Hoog HP, Parikh AN, et al. Hybrid, nanoscale phospholipid/block copolymer vesicles[J]. Polymers, 2013, 5(3): 1102–1114. doi: 10.3390/polym5031102
    [31]
    Schulz M, Olubummo A, Bacia K, et al. Lateral surface engineering of hybrid lipid-BCP vesicles and selective nanoparticle embedding[J]. Soft Matter, 2014, 10(6): 831–839. doi: 10.1039/C3SM52040D
    [32]
    Chen D, Santore MM. Hybrid copolymer-phospholipid vesicles: phase separation resembling mixed phospholipid lamellae, but with mechanical stability and control[J]. Soft Matter, 2015, 11(13): 2617–2626. doi: 10.1039/C4SM02502D
    [33]
    Dao TPT, Fernandes F, Ibarboure E, et al. Modulation of phase separation at the micron scale and nanoscale in giant polymer/lipid hybrid unilamellar vesicles (GHUVs)[J]. Soft Matter, 2017, 13(3): 627–637. doi: 10.1039/C6SM01625A
    [34]
    Dao TPT, Brûlet A, Fernandes F, et al. Mixing block copolymers with phospholipids at the nanoscale: from hybrid polymer/lipid wormlike micelles to vesicles presenting lipid nanodomains[J]. Langmuir, 2017, 33(7): 1705–1715. doi: 10.1021/acs.langmuir.6b04478
    [35]
    Le Meins JF, Schatz C, Lecommandoux S, et al. Hybrid polymer/lipid vesicles: state of the art and future perspectives[J]. Mater Today, 2013, 16(10): 397–402. doi: 10.1016/j.mattod.2013.09.002
    [36]
    Winzen S, Bernhardt M, Schaeffel D, et al. Submicron hybrid vesicles consisting of polymer-lipid and polymer-cholesterol blends[J]. Soft Matter, 2013, 9(25): 5883–5890. doi: 10.1039/c3sm50733e
    [37]
    Dao TPT, Fernandes F, Er-Rafik M, et al. Phase separation and nanodomain formation in hybrid polymer/lipid vesicles[J]. ACS Macro Lett, 2015, 4(2): 182–186. doi: 10.1021/mz500748f
    [38]
    Virk MM, Hofmann B, Reimhult E. Formation and characteristics of lipid-blended block copolymer bilayers on a solid support investigated by quartz crystal microbalance and atomic force microscopy[J]. Langmuir, 2019, 35(3): 739–749. doi: 10.1021/acs.langmuir.8b03597
    [39]
    Dimova R, Seifert U, Pouligny B, et al. Hyperviscous diblock copolymer vesicles[J]. Eur Phys J E, 2002, 7(3): 241–250. doi: DimovaR,SeifertU,PoulignyB,etal.Hyperviscousdiblockcopolymervesicles[J]
    [40]
    Evans E, Heinrich V, Ludwig F, et al. Dynamic tension spectroscopy and strength of biomembranes[J]. Biophys J, 2003, 85(4): 2342–2350. doi: 10.1016/S0006-3495(03)74658-X
    [41]
    Schulz M, Werner S, Bacia K, et al. Controlling molecular recognition with lipid/polymer domains in vesicle membranes[J]. Angew Chem Int Ed, 2013, 52(6): 1829–1833. doi: 10.1002/anie.201204959
    [42]
    Shen W, Hu J, Hu X. Impact of amphiphilic triblock copolymers on stability and permeability of phospholipid/polymer hybrid vesicles[J]. Chem Phys Lett, 2014, 600: 56–61. doi: 10.1016/j.cplett.2014.03.057
    [43]
    Amstad E, Kohlbrecher J, Müller E, et al. Triggered release from liposomes through magnetic actuation of iron oxide nanoparticle containing membranes[J]. Nano Lett, 2011, 11(4): 1664–1670. doi: 10.1021/nl2001499
    [44]
    Amstad E, Reimhult E. Nanoparticle actuated hollow drug delivery vehicles[J]. Nanomedicine, 2012, 7(1): 145–164. doi: 10.2217/nnm.11.167
    [45]
    Shirmardi Shaghasemi B, Virk MM, Reimhult E. Optimization of magneto-thermally controlled release kinetics by tuning of magnetoliposome composition and structure[J]. Sci Rep, 2017, 7(1): 7474. doi: 10.1038/s41598-017-06980-9
    [46]
    Thévenot J, Oliveira H, Sandre O, et al. Magnetic responsive polymer composite materials[J]. Chem Soc Rev, 2013, 42(17): 7099–7116. doi: 10.1039/c3cs60058k
    [47]
    Sanson C, Diou O, Thévenot J, et al. Doxorubicin loaded magnetic polymersomes: theranostic nanocarriers for MR imaging and magneto-chemotherapy[J]. ACS Nano, 2011, 5(2): 1122–1140. doi: 10.1021/nn102762f
    [48]
    Bixner O, Bello G, Virk M, et al. Magneto-thermal release from nanoscale unilamellar hybrid vesicles[J]. ChemNanoMat, 2016, 2(12): 1111–1120. doi: 10.1002/cnma.201600278
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(1)

    Article Metrics

    Article views (332) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return