3.8

CiteScore

2.4

Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Sun Meiqing, Ding Zhanlin, Wang Hong, Yu Guangping, Feng Zhe, Li Bingzhi, Li Penghui. Gelatin filter capture-based high-throughput sequencing analysis of microbial diversity in haze particulate matter[J]. The Journal of Biomedical Research, 2019, 33(6): 414-421. DOI: 10.7555/JBR.33.20180121
Citation: Sun Meiqing, Ding Zhanlin, Wang Hong, Yu Guangping, Feng Zhe, Li Bingzhi, Li Penghui. Gelatin filter capture-based high-throughput sequencing analysis of microbial diversity in haze particulate matter[J]. The Journal of Biomedical Research, 2019, 33(6): 414-421. DOI: 10.7555/JBR.33.20180121

Gelatin filter capture-based high-throughput sequencing analysis of microbial diversity in haze particulate matter

More Information
  • Corresponding author:

    Bingzhi Li, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. Tel: +86-22-27402503, E-mail: bzli@tju.edu.cn

    Penghui Li, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China. Tel: +86-22-60214184, E-mail: lipenghui406@163.com

  • Received Date: December 03, 2018
  • Revised Date: February 09, 2019
  • Accepted Date: February 27, 2019
  • Available Online: April 29, 2019
  • Airborne particulate matter (PM), especially PM2.5, can be easily adsorbed by human respiratory system. Their roles in carrying pathogens for spreading epidemic diseases has attracted great concern. Herein, we developed a novel gelatin filter-based and culture-independent method for investigation of the microbial diversity in PM samples during a haze episode in Tianjin, China. This method involves particle capture by gelatin filters, filter dissolution for DNA extraction, and high-throughput sequencing for analysis of the microbial diversity. A total of 584 operational taxonomic units (OTUs) of bacteria and 370 OTUs of fungi at the genus level were identified during hazy days. The results showed that both bacterial and fungal diversities could be evaluated by this method. This study provides a convenient strategy for investigation of microbial biodiversity in haze, facilitating accurate evaluation of airborne epidemic diseases.
  • [1]
    Feng SL, Gao D, Liao F, et al. The health effects of ambient PM2.5 and potential mechanisms[J]. Ecotoxicol Environ Saf, 2016, 128: 67–74. doi: 10.1016/j.ecoenv.2016.01.030
    [2]
    Wang FW, Lin T, Li YY, et al. Comparison of PM2.5 carbonaceous pollutants between an urban site in Shanghai and a background site in a coastal east China sea island in summer: concentration, composition and sources[J]. Environ Sci Processes Impacts, 2017, 19(6): 833–842. doi: 10.1039/C7EM00129K
    [3]
    Cao SJ, Kong XR, Li LY, et al. An investigation of the PM2.5 and NO2 concentrations and their human health impacts in the metro subway system of Suzhou, China[J]. Environ Sci Processes Impacts, 2017, 19(5): 666–675. doi: 10.1039/C6EM00655H
    [4]
    Fang CS, Zhang ZD, Jin MY, et al. Pollution characteristics of PM2.5 aerosol during haze periods in Changchun, China[J]. Aerosol Air Qual Res, 2017, 17(4): 888–895. doi: 10.4209/aaqr.2016.09.0407
    [5]
    Gao Y, Guo XY, Ji HB, et al. Potential threat of heavy metals and PAHs in PM2.5 in different urban functional areas of Beijing[J]. Atmos Res, 2016, 178-179: 6–16. doi: 10.1016/j.atmosres.2016.03.015
    [6]
    Yeh CF, Lee CL, Brimblecombe P. Effects of seasonality and transport route on chemical characteristics of PM2.5-10 in the East Asian Pacific Rim region[J]. Aerosol Air Qual Res, 2017, 17(12): 2988–3005. doi: 10.4209/aaqr.2016.12.0569
    [7]
    Mohammed MOA, Song WW, Ma YL, et al. Distribution patterns, infiltration and health risk assessment of PM2.5-bound PAHs in indoor and outdoor air in cold zone[J]. Chemosphere, 2016, 155: 70–85. doi: 10.1016/j.chemosphere.2016.04.023
    [8]
    Cheng Z, Chen LJ, Li HH, et al. Characteristics and health risk assessment of heavy metals exposure via household dust from urban area in Chengdu, China[J]. Sci Total Environ, 2018, 619-620: 621–629. doi: 10.1016/j.scitotenv.2017.11.144
    [9]
    Cao C, Jiang WJ, Wang BY, et al. Inhalable microorganisms in Beijing's PM2.5 and PM10 pollutants during a severe smog event[J]. Environ Sci Technol, 2014, 48(3): 1499–1507. doi: 10.1021/es4048472
    [10]
    Wang YC, Fu Y, Wang C, et al. Dissimilar emission characteristics between bioaerosol and suspended particles from gaseous biofilters and bioaerosol health risk evaluation[J]. Aerosol Air Qual Res, 2018, 18(7): 1874–1885. doi: 10.4209/aaqr.2017.11.0485
    [11]
    Zeller M, Giroud M, Royer C, et al. Air pollution and cardiovascular and cerebrovascular disease: epidemiologic data[J]. Presse Med, 2006, 35: 1517–1522. doi: 10.1016/S0755-4982(06)74844-8
    [12]
    Leiva GMA, Santibañez DA, Ibarra ES, et al. A five-year study of particulate matter (PM2.5) and cerebrovascular diseases[J]. Environ Pollut, 2013, 181: 1–6. doi: 10.1016/j.envpol.2013.05.057
    [13]
    Yoo K, Lee TK, Choi EJ, et al. Molecular approaches for the detection and monitoring of microbial communities in bioaerosols: a review[J]. J Environ Sci, 2017, 51: 234–247. doi: 10.1016/j.jes.2016.07.002
    [14]
    Douwes J, Thorne P, Pearce N, et al. Bioaerosol health effects and exposure assessment: progress and prospects[J]. Ann Occup Hyg, 2003, 47(3): 187–200.
    [15]
    Li YP, Fu HL, Wang W, et al. Characteristics of bacterial and fungal aerosols during the autumn haze days in Xi'an, China[J]. Atmos Environ, 2015, 122: 439–447. doi: 10.1016/j.atmosenv.2015.09.070
    [16]
    Fang ZG, Yao WC, Lou XQ, et al. Profile and characteristics of culturable airborne bacteria in Hangzhou, southeast of China[J]. Aerosol Air Qual Res, 2016, 16(7): 1690–1700. doi: 10.4209/aaqr.2014.11.0274
    [17]
    Brodie EL, DeSantis TZ, Parker JPM, et al. Urban aerosols harbor diverse and dynamic bacterial populations[J]. Proc Natl Acad Sci USA, 2007, 104(1): 299–304. doi: 10.1073/pnas.0608255104
    [18]
    Azhar EI, Hashem AM, El-Kafrawy SA, et al. Detection of the middle east respiratory syndrome coronavirus genome in an air sample originating from a camel barn owned by an infected patient[J]. mBio, 2014, 5(4): e01450–14.
    [19]
    Magoč T, Salzberg SL. Flash: fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics, 2011, 27(21): 2957–2963. doi: 10.1093/bioinformatics/btr507
    [20]
    Grice EA, Kong HH, Conlan S, et al. Topographical and temporal diversity of the human skin microbiome[J]. Science, 2009, 324(5931): 1190–1192. doi: 10.1126/science.1171700
    [21]
    Caporaso JG, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data[J]. Nat Methods, 2010, 7(5): 335–336. doi: 10.1038/nmeth.f.303
    [22]
    Fitzpatrick F, Roche F, Cunney R, et al. Challenges of implementing national guidelines for the control and prevention of methicillin‐resistant Staphylococcus aureus colonization or infection in acute care hospitals in the republic of Ireland[J]. Infect Control Hosp Epidemiol, 2009, 30(3): 277–281. doi: 10.1086/595734
    [23]
    Gupta AK, Batra R, Bluhm R, et al. Skin diseases associated with Malassezia species[J]. J Am Acad Dermatol, 2004, 51(5): 785–798. doi: 10.1016/j.jaad.2003.12.034
    [24]
    Lee SA, Liao CH. Size-selective assessment of agricultural workers' personal exposure to airborne fungi and fungal fragments[J]. Sci Total Environ, 2014, 466-467: 725–732. doi: 10.1016/j.scitotenv.2013.07.104
    [25]
    Williams L, Ulrich CM, Larson T, et al. Fine particulate matter (PM2.5) air pollution and immune status among women in the Seattle area[J]. Arch Environ Occup Health, 2011, 66(3): 155–165. doi: 10.1080/19338244.2010.539636
    [26]
    Xie ZS, Fan CL, Lu R, et al. Characteristics of ambient bioaerosols during haze episodes in China: a review[J]. Environ Pollut, 2018, 243: 1930–1942. doi: 10.1016/j.envpol.2018.09.051
    [27]
    Khreis H, Kelly C, Tate J, et al. Exposure to traffic-related air pollution and risk of development of childhood asthma: a systematic review and meta-analysis[J]. Environ Int, 2017, 100: 1–31. doi: 10.1016/j.envint.2016.11.012
    [28]
    Kim SY, Peel JL, Hannigan MP, et al. The temporal lag structure of short-term associations of fine particulate matter chemical constituents and cardiovascular and respiratory hospitalizations[J]. Environ Health Perspect, 2012, 120(8): 1094–1099. doi: 10.1289/ehp.1104721
    [29]
    Shahsavan S, Jabalameli L, Maleknejad P, et al. Molecular analysis and antimicrobial susceptibility of methicillin resistant Staphylococcus aureus in one of the hospitals of Tehran university of medical sciences: high prevalence of sequence type 239 (ST239) clone[J]. Acta Microbiol Immunol Hung, 2011, 58(1): 31–39. doi: 10.1556/AMicr.58.2011.1.4
    [30]
    Bernard K. The genus Corynebacterium and other medically relevant coryneform-like bacteria[J]. J Clin Microbiol, 2012, 50(10): 3152–3158. doi: 10.1128/JCM.00796-12
    [31]
    Wozniak TM. Clinical management of drug-resistant bacteria in Australian hospitals: an online survey of doctors' opinions[J]. Infect Dis Health, 2018, 23(1): 41–48. doi: 10.1016/j.idh.2017.11.003
    [32]
    Longhin E, Holme JA, Gutzkow KB, et al. Cell cycle alterations induced by urban PM2.5 in bronchial epithelial cells: characterization of the process and possible mechanisms involved[J]. Part Fibre Toxicol, 2013, 10: 63. doi: 10.1186/1743-8977-10-63
  • Related Articles

    [1]Fei Qin, Hao Yu, Changrong Xu, Huihui Chen, Jianling Bai. Safety of axitinib and sorafenib monotherapy for patients with renal cell carcinoma: a meta-analysis[J]. The Journal of Biomedical Research, 2018, 32(1): 30-38. DOI: 10.7555/JBR.32.20170080
    [2]Xu Hu, Linfei Jiang, Chenhui Tang, Yuehong Ju, Li Jiu, Yongyue Wei, Li Guo, Yang Zhao. Association of three single nucleotide polymorphisms of ESR1 with breast cancer susceptibility: a meta-analysis[J]. The Journal of Biomedical Research, 2017, 31(3): 213-225. DOI: 10.7555/JBR.31.20160087
    [3]Wei Qian, Kuanfeng Xu, Wenting Jia, Ling Lan, Xuqin Zheng, Xueyang Yang, Dai Cui. Association between TSHR gene polymorphism and the risk of Graves' disease: a meta-analysis[J]. The Journal of Biomedical Research, 2016, 30(6): 466-475. DOI: 10.7555/JBR.30.20140144
    [4]Peng Zou, Lin Zhao, Haitao Xu, Ping Chen, Aihua Gu, Ning Liu, Peng Zhao, Ailin Lu. Hsa-mir-499 rs3746444 polymorphism and cancer risk: a meta-analysis[J]. The Journal of Biomedical Research, 2012, 26(4): 253-259. DOI: 10.7555/JBR.26.20110122
    [5]Zhiqiang Yin, Jiali Xu, Dan Luo. Efficacy and tolerance of tacrolimus and pimecrolimus for atopic dermatitis: a meta-analysis[J]. The Journal of Biomedical Research, 2011, 25(6): 385-391. DOI: 10.1016/S1674-8301(11)60051-1
    [6]Liang Zong, Ping Chen, Yinbing Chen, Guohao Shi. Pouch Roux-en-Y vs No Pouch Roux-en-Y following total gastrectomy: a meta-analysis based on 12 studies[J]. The Journal of Biomedical Research, 2011, 25(2): 90-99. DOI: 10.1016/S1674-8301(11)60011-0
    [7]Lifeng Zhang, Ning Shao, Qianqian Yu, Lixin Hua, Yuanyuan Mi, Ninghan Feng. Association between p53 Pro72Arg polymorphism and prostate cancer risk: a meta-analysis[J]. The Journal of Biomedical Research, 2011, 25(1): 25-32. DOI: 10.1016/S1674-8301(11)60003-1
    [8]Donghua Li, Jie Wu. Association of the MTHFR C677T polymorphism and bone mineral density in postmenopausal women: a meta-analysis[J]. The Journal of Biomedical Research, 2010, 24(6): 417-423. DOI: 10.1016/S1674-8301(10)60056-5
    [9]Yuanyuan Mi, Qianqian Yu, Zhichao Min, Bin Xu, Lifeng Zhang, Wei Zhang, Ninghan Feng, Lixin Hua. Arg462Gln and Asp541Glu polymorphisms in ribonuclease L and prostate cancer risk: a meta-analysis[J]. The Journal of Biomedical Research, 2010, 24(5): 365-373. DOI: 10.1016/S1674-8301(10)60049-8
    [10]Bingbing Wei, Yunyun Zhang, Bo Xi, Junkai Chang, Jinming Bai, Jiantang Su. CYP17 T27C polymorphism and prostate cancer risk:a meta-analysis based on 31 studies[J]. The Journal of Biomedical Research, 2010, 24(3): 233-241.
  • Other Related Supplements

  • Cited by

    Periodical cited type(25)

    1. Song P, Liu T, Zhang Y, et al. Traditional Chinese medicine in the treatment of breast Cancer. Mol Cancer, 2025, 24(1): 209. DOI:10.1186/s12943-025-02416-5
    2. Sumorek-Wiadro J, Kapral-Piotrowska J, Zając A, et al. Proapoptotic and antimigration properties of osthole in combination with LY294002 against human glioma cells. Naunyn Schmiedebergs Arch Pharmacol, 2025, 398(3): 3147-3161. DOI:10.1007/s00210-024-03424-w
    3. Kordulewska NK, Król-Grzymała A. The Effect of Osthole on Transient Receptor Potential Channels: A Possible Alternative Therapy for Atopic Dermatitis. J Inflamm Res, 2024, 17: 881-898. DOI:10.2147/JIR.S425978
    4. Kordulewska NK, Król-Grzymała A. The Effect of Osthole on Transient Receptor Potential Channels: A Possible Alternative Therapy for Atopic Dermatitis. J Inflamm Res, 2024, 17: 881-898. DOI:10.2147/JIR.S425978
    5. Naeem A, Hu P, Yang M, et al. Natural Products as Anticancer Agents: Current Status and Future Perspectives. Molecules, 2022, 27(23): 8367. DOI:10.3390/molecules27238367
    6. Naeem A, Hu P, Yang M, et al. Natural Products as Anticancer Agents: Current Status and Future Perspectives. Molecules, 2022, 27(23): 8367. DOI:10.3390/molecules27238367
    7. Kordulewska NK, Topa J, Rozmus D, et al. Effects of Osthole on Inflammatory Gene Expression and Cytokine Secretion in Histamine-Induced Inflammation in the Caco-2 Cell Line. Int J Mol Sci, 2021, 22(24): 13634. DOI:10.3390/ijms222413634
    8. Mei J, Wang T, Zhao S, et al. Osthole Inhibits Breast Cancer Progression through Upregulating Tumor Suppressor GNG7. J Oncol, 2021, 2021: 6610511. DOI:10.1155/2021/6610511
    9. Mei J, Wang T, Zhao S, et al. Osthole Inhibits Breast Cancer Progression through Upregulating Tumor Suppressor GNG7. J Oncol, 2021, 2021: 6610511. DOI:10.1155/2021/6610511
    10. Abosharaf HA, Diab T, Atlam FM, et al. Osthole extracted from a citrus fruit that affects apoptosis on A549 cell line by histone deacetylasese inhibition (HDACs). Biotechnol Rep (Amst), 2020, 28: e00531. DOI:10.1016/j.btre.2020.e00531
    11. Ávalos-Moreno M, López-Tejada A, Blaya-Cánovas JL, et al. Drug Repurposing for Triple-Negative Breast Cancer. J Pers Med, 2020, 10(4): 200. DOI:10.3390/jpm10040200
    12. Kordulewska NK, Topa J, Tańska M, et al. Modulatory Effects of Osthole on Lipopolysaccharides-Induced Inflammation in Caco-2 Cell Monolayer and Co-Cultures with THP-1 and THP-1-Derived Macrophages. Nutrients, 2020, 13(1): 123. DOI:10.3390/nu13010123
    13. Ye J, Sun D, Yu Y, et al. Osthole resensitizes CD133+ hepatocellular carcinoma cells to cisplatin treatment via PTEN/AKT pathway. Aging (Albany NY), 2020, 12(14): 14406-14417. DOI:10.18632/aging.103484
    14. Wang B, Shen C, Li Y, et al. Oridonin overcomes the gemcitabine resistant PANC-1/Gem cells by regulating GST pi and LRP/1 ERK/JNK signalling. Onco Targets Ther, 2019, 12: 5751-5765. DOI:10.2147/OTT.S208924
    15. Wang B, Shen C, Li Y, et al. Oridonin overcomes the gemcitabine resistant PANC-1/Gem cells by regulating GST pi and LRP/1 ERK/JNK signalling. Onco Targets Ther, 2019, 12: 5751-5765. DOI:10.2147/OTT.S208924
    16. Yang Y, Ren F, Tian Z, et al. Osthole Synergizes With HER2 Inhibitor, Trastuzumab in HER2-Overexpressed N87 Gastric Cancer by Inducing Apoptosis and Inhibition of AKT-MAPK Pathway. Front Pharmacol, 2018, 9: 1392. DOI:10.3389/fphar.2018.01392
    17. Liu Y, Dong X, Wang W, et al. Molecular Mechanisms of Apoptosis in HepaRG Cell Line Induced by Polyphyllin VI via the Fas Death Pathway and Mitochondrial-Dependent Pathway. Toxins (Basel), 2018, 10(5): 201. DOI:10.3390/toxins10050201
    18. Zhang S, Huang Q, Cai X, et al. Osthole Ameliorates Renal Fibrosis in Mice by Suppressing Fibroblast Activation and Epithelial-Mesenchymal Transition. Front Physiol, 2018, 9: 1650. DOI:10.3389/fphys.2018.01650
    19. Liu Y, Dong X, Wang W, et al. Molecular Mechanisms of Apoptosis in HepaRG Cell Line Induced by Polyphyllin VI via the Fas Death Pathway and Mitochondrial-Dependent Pathway. Toxins (Basel), 2018, 10(5): 201. DOI:10.3390/toxins10050201
    20. Zhu X, Song X, Xie K, et al. Osthole induces apoptosis and suppresses proliferation via the PI3K/Akt pathway in intrahepatic cholangiocarcinoma. Int J Mol Med, 2017, 40(4): 1143-1151. DOI:10.3892/ijmm.2017.3113
    21. Feng H, Lu JJ, Wang Y, et al. Osthole inhibited TGF β-induced epithelial-mesenchymal transition (EMT) by suppressing NF-κB mediated Snail activation in lung cancer A549 cells. Cell Adh Migr, 2017, 11(5-6): 464-475. DOI:10.1080/19336918.2016.1259058
    22. Li H, Wang Q, Dong L, et al. Morusin suppresses breast cancer cell growth in vitro and in vivo through C/EBPβ and PPARγ mediated lipoapoptosis. J Exp Clin Cancer Res, 2015, 34: 137. DOI:10.1186/s13046-015-0252-4
    23. Yang M, Zhu H, Hu T, et al. Association of CCND1 gene polymorphism with cervical cancer susceptibility in Caucasian population: a meta-analysis. Int J Clin Exp Med, 2015, 8(8): 12983-8.
    24. Ying J, Xu H, Wu D, et al. Emodin induces apoptosis of human osteosarcoma cells via mitochondria- and endoplasmic reticulum stress-related pathways. Int J Clin Exp Pathol, 2015, 8(10): 12837-44.
    25. Yang M, Zhu H, Hu T, et al. Association of CCND1 gene polymorphism with cervical cancer susceptibility in Caucasian population: a meta-analysis. Int J Clin Exp Med, 2015, 8(8): 12983-8.

    Other cited types(0)

Catalog

    Corresponding author: Li Penghui, lipenghui406@163.com

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Article Metrics

    Article views (3556) PDF downloads (61) Cited by(25)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return