1. |
Wang Y, Lyu L, Vu T, et al. TRIM44 enhances autophagy via SQSTM1 oligomerization in response to oxidative stress. Sci Rep, 2024, 14(1): 18974.
DOI:10.1038/s41598-024-67832-x
|
2. |
Wang Y, Lyu L, Vu T, et al. WITHDRAWN: TRIM44 promotes autophagy through SQSTM1 oligomerization in the response to oxidative stress induced by Arsenic Trioxide in cancer cells. Res Sq, 2024.
DOI:10.21203/rs.3.rs-3951960/v1
|
3. |
Su Y, Sun X, Liu X, et al. hUC-EVs-ATO reduce the severity of acute GVHD by resetting inflammatory macrophages toward the M2 phenotype. J Hematol Oncol, 2022, 15(1): 99.
DOI:10.1186/s13045-022-01315-2
|
4. |
Yu M, Zhang Y, Fang M, et al. Current Advances of Nanomedicines Delivering Arsenic Trioxide for Enhanced Tumor Therapy. Pharmaceutics, 2022, 14(4): 743.
DOI:10.3390/pharmaceutics14040743
|
5. |
Huang Y, Xu Z, Wei Y, et al. Albumin-Embellished Arsenic Trioxide-Loaded Polymeric Nanoparticles Enhance Tumor Accumulation and Anticancer Efficacy via Transcytosis for Hepatocellular Carcinoma Therapy. AAPS PharmSciTech, 2022, 23(4): 111.
DOI:10.1208/s12249-022-02254-4
|
6. |
Jiang T, Huang JB, Xu CY, et al. Arsenic Trioxide Cooperate Cryptotanshinone Exerts Antitumor Effect by Medicating Macrophage Polarization through Glycolysis. J Immunol Res, 2022, 2022: 2619781.
DOI:10.1155/2022/2619781
|
7. |
Noy JM, Chen F, Stenzel M. Post-functionalization of drug-loaded nanoparticles prepared by polymerization-induced self-assembly (PISA) with mitochondria targeting ligands. Beilstein J Org Chem, 2021, 17: 2302-2314.
DOI:10.3762/bjoc.17.148
|
8. |
Kong D, Jiang T, Liu J, et al. Chemoembolizing hepatocellular carcinoma with microsphere cored with arsenic trioxide microcrystal. Drug Deliv, 2020, 27(1): 1729-1740.
DOI:10.1080/10717544.2020.1856219
|
9. |
Wang S, Liu C, Wang C, et al. Arsenic trioxide encapsulated liposomes prepared via copper acetate gradient loading method and its antitumor efficiency. Asian J Pharm Sci, 2020, 15(3): 365-373.
DOI:10.1016/j.ajps.2018.12.002
|
10. |
Cioloboc D, Kurtz DM Jr. Targeted cancer cell delivery of arsenate as a reductively activated prodrug. J Biol Inorg Chem, 2020, 25(3): 441-449.
DOI:10.1007/s00775-020-01774-3
|
11. |
Lian Y, Wang X, Guo P, et al. Erythrocyte Membrane-Coated Arsenic Trioxide-Loaded Sodium Alginate Nanoparticles for Tumor Therapy. Pharmaceutics, 2019, 12(1): 21.
DOI:10.3390/pharmaceutics12010021
|
12. |
Cordani M, Strippoli R, Somoza Á. Nanomaterials as Inhibitors of Epithelial Mesenchymal Transition in Cancer Treatment. Cancers (Basel), 2019, 12(1): 25.
DOI:10.3390/cancers12010025
|
13. |
Hu J, Dong Y, Ding L, et al. Local delivery of arsenic trioxide nanoparticles for hepatocellular carcinoma treatment. Signal Transduct Target Ther, 2019, 4: 28.
DOI:10.1038/s41392-019-0062-9
|
14. |
Miodragović Đ, Merlino A, Swindell EP, et al. Arsenoplatin-1 Is a Dual Pharmacophore Anticancer Agent. J Am Chem Soc, 2019, 141(16): 6453-6457.
DOI:10.1021/jacs.8b13681
|
15. |
Huang W, Zeng YC. A candidate for lung cancer treatment: arsenic trioxide. Clin Transl Oncol, 2019, 21(9): 1115-1126.
DOI:10.1007/s12094-019-02054-6
|
16. |
Su J, Liu G, Lian Y, et al. Preparation and characterization of erythrocyte membrane cloaked PLGA/arsenic trioxide nanoparticles and evaluation of their in vitro anti-tumor effect. RSC Adv, 2018, 8(36): 20068-20076.
DOI:10.1039/c8ra01417e
|
17. |
Lu Y, Han S, Zheng H, et al. A novel RGDyC/PEG co-modified PAMAM dendrimer-loaded arsenic trioxide of glioma targeting delivery system. Int J Nanomedicine, 2018, 13: 5937-5952.
DOI:10.2147/IJN.S175418
|
18. |
Mancini I, Planchestainer M, Defant A. Synthesis and in-vitro anticancer evaluation of polyarsenicals related to the marine sponge derived Arsenicin A. Sci Rep, 2017, 7(1): 11548.
DOI:10.1038/s41598-017-11566-6
|