3.8

CiteScore

2.4

Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Joshua Muli Mutiso, John Chege Macharia, Maria Ndunge Kiio, James Maina Ichagichu, Hitler Rikoi, Michael Muita Gicheru. Development of Leishmania vaccines: predicting the future from past and present experience[J]. The Journal of Biomedical Research, 2013, 27(2): 85-102. DOI: 10.7555/JBR.27.20120064
Citation: Joshua Muli Mutiso, John Chege Macharia, Maria Ndunge Kiio, James Maina Ichagichu, Hitler Rikoi, Michael Muita Gicheru. Development of Leishmania vaccines: predicting the future from past and present experience[J]. The Journal of Biomedical Research, 2013, 27(2): 85-102. DOI: 10.7555/JBR.27.20120064

Development of Leishmania vaccines: predicting the future from past and present experience

More Information
  • Received Date: June 16, 2012
  • Leishmaniasis is a disease that ranges in severity from skin lesions to serious disfigurement and fatal systemic infection. Resistance to infection is associated with a T-helper-1 immune response that activates macrophages to kill the intracellular parasite in a nitric oxide-dependent manner. Conversely, disease progression is generally associated with a T-helper-2 response that activates humoral immunity. Current control is based on chemothera-peutic treatments which are expensive, toxic and associated with high relapse and resistance rates. Vaccination remains the best hope for control of all forms of the disease, and the development of a safe, effective and afford-able antileishmanial vaccine is a critical global public-health priority. Extensive evidence from studies in animal models indicates that solid protection can be achieved by immunization with defined subunit vaccines or live-at-tenuated strains of Leishmania. However, to date, no vaccine is available despite substantial efforts by many labo-ratories. Major impediments in Leishmania vaccine development include: lack of adequate funding from national and international agencies, problems related to the translation of data from animal models to human disease, and the transition from the laboratory to the field. Furthermore, a thorough understanding of protective immune re-sponses and generation and maintenance of the immunological memory, an important but least-studied aspect of antiparasitic vaccine development, during Leishmania infection is needed. This review focuses on the progress of the search for an effective vaccine against human and canine leishmaniasis.
  • Related Articles

    [1]Fei Qin, Hao Yu, Changrong Xu, Huihui Chen, Jianling Bai. Safety of axitinib and sorafenib monotherapy for patients with renal cell carcinoma: a meta-analysis[J]. The Journal of Biomedical Research, 2018, 32(1): 30-38. DOI: 10.7555/JBR.32.20170080
    [2]Xu Hu, Linfei Jiang, Chenhui Tang, Yuehong Ju, Li Jiu, Yongyue Wei, Li Guo, Yang Zhao. Association of three single nucleotide polymorphisms of ESR1 with breast cancer susceptibility: a meta-analysis[J]. The Journal of Biomedical Research, 2017, 31(3): 213-225. DOI: 10.7555/JBR.31.20160087
    [3]Wei Qian, Kuanfeng Xu, Wenting Jia, Ling Lan, Xuqin Zheng, Xueyang Yang, Dai Cui. Association between TSHR gene polymorphism and the risk of Graves' disease: a meta-analysis[J]. The Journal of Biomedical Research, 2016, 30(6): 466-475. DOI: 10.7555/JBR.30.20140144
    [4]Peng Zou, Lin Zhao, Haitao Xu, Ping Chen, Aihua Gu, Ning Liu, Peng Zhao, Ailin Lu. Hsa-mir-499 rs3746444 polymorphism and cancer risk: a meta-analysis[J]. The Journal of Biomedical Research, 2012, 26(4): 253-259. DOI: 10.7555/JBR.26.20110122
    [5]Zhiqiang Yin, Jiali Xu, Dan Luo. Efficacy and tolerance of tacrolimus and pimecrolimus for atopic dermatitis: a meta-analysis[J]. The Journal of Biomedical Research, 2011, 25(6): 385-391. DOI: 10.1016/S1674-8301(11)60051-1
    [6]Liang Zong, Ping Chen, Yinbing Chen, Guohao Shi. Pouch Roux-en-Y vs No Pouch Roux-en-Y following total gastrectomy: a meta-analysis based on 12 studies[J]. The Journal of Biomedical Research, 2011, 25(2): 90-99. DOI: 10.1016/S1674-8301(11)60011-0
    [7]Lifeng Zhang, Ning Shao, Qianqian Yu, Lixin Hua, Yuanyuan Mi, Ninghan Feng. Association between p53 Pro72Arg polymorphism and prostate cancer risk: a meta-analysis[J]. The Journal of Biomedical Research, 2011, 25(1): 25-32. DOI: 10.1016/S1674-8301(11)60003-1
    [8]Donghua Li, Jie Wu. Association of the MTHFR C677T polymorphism and bone mineral density in postmenopausal women: a meta-analysis[J]. The Journal of Biomedical Research, 2010, 24(6): 417-423. DOI: 10.1016/S1674-8301(10)60056-5
    [9]Yuanyuan Mi, Qianqian Yu, Zhichao Min, Bin Xu, Lifeng Zhang, Wei Zhang, Ninghan Feng, Lixin Hua. Arg462Gln and Asp541Glu polymorphisms in ribonuclease L and prostate cancer risk: a meta-analysis[J]. The Journal of Biomedical Research, 2010, 24(5): 365-373. DOI: 10.1016/S1674-8301(10)60049-8
    [10]Bingbing Wei, Yunyun Zhang, Bo Xi, Junkai Chang, Jinming Bai, Jiantang Su. CYP17 T27C polymorphism and prostate cancer risk:a meta-analysis based on 31 studies[J]. The Journal of Biomedical Research, 2010, 24(3): 233-241.

Catalog

    Michael Muita Gicheru

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Article Metrics

    Article views (11405) PDF downloads (3219) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return