Citation: | Zhenxiang Gong, Li Ba, Jiahui Tang, Yuan Yang, Zehui Li, Mao Liu, Chun Yang, Fengfei Ding, Min Zhang. Gut microbiota links with cognitive impairment in amyotrophic lateral sclerosis: A multi-omics study[J]. The Journal of Biomedical Research, 2023, 37(2): 125-137. DOI: 10.7555/JBR.36.20220198 |
CLC number: R744.8, Document code: A
The authors reported no conflict of interests.
[1] |
Kiernan MC, Vucic S, Cheah BC, et al. Amyotrophic lateral sclerosis[J]. Lancet, 2011, 377(9769): 942–955. doi: 10.1016/S0140-6736(10)61156-7
|
[2] |
Arnoriaga-Rodríguez M, Fernández-Real JM. Microbiota impacts on chronic inflammation and metabolic syndrome - related cognitive dysfunction[J]. Rev Endocr Metab Disord, 2019, 20(4): 473–480. doi: 10.1007/s11154-019-09537-5
|
[3] |
Crockford C, Newton J, Lonergan K, et al. ALS-specific cognitive and behavior changes associated with advancing disease stage in ALS[J]. Neurology, 2018, 91(15): e1370–e1380. doi: 10.1212/WNL.0000000000006317
|
[4] |
Chiò A, Ilardi A, Cammarosano S, et al. Neurobehavioral dysfunction in ALS has a negative effect on outcome and use of PEG and NIV[J]. Neurology, 2012, 78(14): 1085–1089. doi: 10.1212/WNL.0b013e31824e8f53
|
[5] |
Elamin M, Phukan J, Bede P, et al. Executive dysfunction is a negative prognostic indicator in patients with ALS without dementia[J]. Neurology, 2011, 76(14): 1263–1269. doi: 10.1212/WNL.0b013e318214359f
|
[6] |
Ye S, Ji Y, Li C, et al. The edinburgh cognitive and behavioural ALS screen in a Chinese amyotrophic lateral sclerosis population[J]. PLoS One, 2016, 11(5): e0155496. doi: 10.1371/journal.pone.0155496
|
[7] |
Xu Z, Alruwaili ARS, Henderson RD, et al. Screening for cognitive and behavioural impairment in amyotrophic lateral sclerosis: frequency of abnormality and effect on survival[J]. J Neurol Sci, 2017, 376: 16–23. doi: 10.1016/j.jns.2017.02.061
|
[8] |
Goldstein LH, Abrahams S. Changes in cognition and behaviour in amyotrophic lateral sclerosis: nature of impairment and implications for assessment[J]. Lancet Neurol, 2013, 12(4): 368–380. doi: 10.1016/S1474-4422(13)70026-7
|
[9] |
Balendra R, Isaacs AM. C9orf72-mediated ALS and FTD: multiple pathways to disease[J]. Nat Rev Neurol, 2018, 14(9): 544–558. doi: 10.1038/s41582-018-0047-2
|
[10] |
Zou Z, Zhou Z, Che C, et al. Genetic epidemiology of amyotrophic lateral sclerosis: a systematic review and meta-analysis[J]. J Neurol, Neurosurg, Psychiatry, 2017, 88(7): 540–549. doi: 10.1136/jnnp-2016-315018
|
[11] |
He J, Tang L, Benyamin B, et al. C9orf72 hexanucleotide repeat expansions in Chinese sporadic amyotrophic lateral sclerosis[J]. Neurobiol Aging, 2015, 36(9): 2660.e1–2660.e8. doi: 10.1016/j.neurobiolaging.2015.06.002
|
[12] |
Tang J, Yang Y, Gong Z, et al. Plasma uric acid helps predict cognitive impairment in patients with amyotrophic lateral sclerosis[J]. Front Neurol, 2021, 12: 789840. doi: 10.3389/fneur.2021.789840
|
[13] |
Wang X, Sun G, Feng T, et al. Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer's disease progression[J]. Cell Res, 2019, 29(10): 787–803. doi: 10.1038/s41422-019-0216-x
|
[14] |
Chen Y, Xu J, Chen Y. Regulation of neurotransmitters by the gut microbiota and effects on cognition in neurological disorders[J]. Nutrients, 2021, 13(6): 2099. doi: 10.3390/nu13062099
|
[15] |
Matisz CE, Gruber AJ. Neuroinflammatory remodeling of the anterior cingulate cortex as a key driver of mood disorders in gastrointestinal disease and disorders[J]. Neurosci Biobehav Rev, 2022, 133: 104497. doi: 10.1016/j.neubiorev.2021.12.020
|
[16] |
Giau VV, Wu S, Jamerlan A, et al. Gut microbiota and their neuroinflammatory implications in Alzheimer's disease[J]. Nutrients, 2018, 10(11): 1765. doi: 10.3390/nu10111765
|
[17] |
Białecka-Dębek A, Granda D, Szmidt MK, et al. Gut microbiota, probiotic interventions, and cognitive function in the elderly: a review of current knowledge[J]. Nutrients, 2021, 13(8): 2514. doi: 10.3390/nu13082514
|
[18] |
Mccombe PA, Henderson RD, Lee A, et al. Gut microbiota in ALS: possible role in pathogenesis?[J]. Expert Rev Neurother, 2019, 19(9): 785–805. doi: 10.1080/14737175.2019.1623026
|
[19] |
Di Gioia D, Bozzi Cionci N, Baffoni L, et al. A prospective longitudinal study on the microbiota composition in amyotrophic lateral sclerosis[J]. BMC Med, 2020, 18(1): 153. doi: 10.1186/s12916-020-01607-9
|
[20] |
Blacher E, Bashiardes S, Shapiro H, et al. Potential roles of gut microbiome and metabolites in modulating ALS in mice[J]. Nature, 2019, 572(7770): 474–480. doi: 10.1038/s41586-019-1443-5
|
[21] |
Brenner D, Hiergeist A, Adis C, et al. The fecal microbiome of ALS patients[J]. Neurobiol Aging, 2018, 61: 132–137. doi: 10.1016/j.neurobiolaging.2017.09.023
|
[22] |
Niccolai E, Di Pilato V, Nannini G, et al. The Gut Microbiota-Immunity Axis in ALS: A Role in Deciphering Disease Heterogeneity?[J]. Biomedicines, 2021, 9(7).
|
[23] |
Brooks BR, Miller RG, Swash M, et al. El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis[J]. Amyotroph Lateral Scler Other Motor Neuron Disord, 2000, 1(5): 293–299. doi: 10.1080/146608200300079536
|
[24] |
Cedarbaum JM, Stambler N, Malta E, et al. The ALSFRS-R: a revised ALS functional rating scale that incorporates assessments of respiratory function. BDNF ALS Study Group (Phase Ⅲ)[J]. J Neurol Sci, 1999, 169(1–2): 13–21. doi: 10.1016/s0022-510x(99)00210-5
|
[25] |
Zhai C, Zheng J, An B, et al. Intestinal microbiota composition in patients with amyotrophic lateral sclerosis: establishment of bacterial and archaeal communities analyses[J]. Chin Med J, 2019, 132(15): 1815–1822. doi: 10.1097/CM9.0000000000000351
|
[26] |
López-García A, Pineda-Quiroga C, Atxaerandio R, et al. Comparison of mothur and QIIME for the analysis of rumen microbiota composition based on 16S rRNA amplicon sequences[J]. Front Microbiol, 2018, 9: 3010. doi: 10.3389/fmicb.2018.03010
|
[27] |
Hugerth LW, Andersson AF. Analysing microbial community composition through amplicon sequencing: from sampling to hypothesis testing[J]. Front Microbiol, 2017, 8: 1561. doi: 10.3389/fmicb.2017.01561
|
[28] |
Yang J, Wang H, Roberts DJ, et al. Persistence of antibiotic resistance genes from river water to tap water in the Yangtze River Delta[J]. Sci Total Environ, 2020, 742: 140592. doi: 10.1016/j.scitotenv.2020.140592
|
[29] |
Segata N, Izard J, Waldron L, et al. Metagenomic biomarker discovery and explanation[J]. Genome Biol, 2011, 12(6): R60. doi: 10.1186/gb-2011-12-6-r60
|
[30] |
Ridlon JM, Kang DJ, Hylemon PB. Bile salt biotransformations by human intestinal bacteria[J]. J Lipid Res, 2006, 47(2): 241–259. doi: 10.1194/jlr.R500013-JLR200
|
[31] |
Duboc H, Rainteau D, Rajca S, et al. Increase in fecal primary bile acids and dysbiosis in patients with diarrhea-predominant irritable bowel syndrome[J]. Neurogastroenterol Motil, 2012, 24(6): 513–520. doi: 10.1111/j.1365-2982.2012.01893.x
|
[32] |
Staley C, Weingarden AR, Khoruts A, et al. Interaction of gut microbiota with bile acid metabolism and its influence on disease states[J]. Appl Microbiol Biotechnol, 2017, 101(1): 47–64. doi: 10.1007/s00253-016-8006-6
|
[33] |
Rinninella E, Raoul P, Cintoni M, et al. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases[J]. Microorganisms, 2019, 7(1): 14. doi: 10.3390/microorganisms7010014
|
[34] |
Fang X, Wang X, Yang S, et al. Evaluation of the microbial diversity in amyotrophic lateral sclerosis using high-throughput sequencing[J]. Front Microbiol, 2016, 7: 1479. doi: 10.3389/fmicb.2016.01479
|
[35] |
Rowin J, Xia Y, Jung B, et al. Gut inflammation and dysbiosis in human motor neuron disease[J]. Physiol Rep, 2017, 5(18): e13443. doi: 10.14814/phy2.13443
|
[36] |
Zeng Q, Shen J, Chen K, et al. The alteration of gut microbiome and metabolism in amyotrophic lateral sclerosis patients[J]. Sci Rep, 2020, 10(1): 12998. doi: 10.1038/s41598-020-69845-8
|
[37] |
Ngo ST, Restuadi R, McCrae AF, et al. Progression and survival of patients with motor neuron disease relative to their fecal microbiota[J]. Amyotroph Lateral Scler Frontotemporal Degener, 2020, 21(7–8): 549–562. doi: 10.1080/21678421.2020.1772825
|
[38] |
Nicholson K, Bjornevik K, Abu-Ali G, et al. The human gut microbiota in people with amyotrophic lateral sclerosis[J]. Amyotroph Lateral Scler Frontotemporal Degener, 2021, 22(3–4): 186–194. doi: 10.1080/21678421.2020.1828475
|
[39] |
Sinha SR, Haileselassie Y, Nguyen LP, et al. Dysbiosis-induced secondary bile acid deficiency promotes intestinal inflammation[J]. Cell Host Microbe, 2020, 27(4): 659–670.e5. doi: 10.1016/j.chom.2020.01.021
|
[40] |
Johnson JS, Spakowicz DJ, Hong BY, et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis[J]. Nat Commun, 2019, 10(1): 5029. doi: 10.1038/s41467-019-13036-1
|
[41] |
Wahlström A, Sayin SI, Marschall HU, et al. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism[J]. Cell Metab, 2016, 24(1): 41–50. doi: 10.1016/j.cmet.2016.05.005
|
[42] |
Gee LMV, Barron-Millar B, Leslie J, et al. Anti-cholestatic therapy with obeticholic acid improves short-term memory in bile duct-ligated mice[J]. Am J Pathol, 2022, 193(1): 11–26. doi: 10.1016/j.ajpath.2022.09.005
|
[43] |
Ding L, Yang L, Wang Z, et al. Bile acid nuclear receptor FXR and digestive system diseases[J]. Acta Pharm Sin B, 2015, 5(2): 135–144. doi: 10.1016/j.apsb.2015.01.004
|
[44] |
Bazzari FH, Abdallah DM, El-Abhar HS. Chenodeoxycholic acid ameliorates AlCl3-induced Alzheimer's disease neurotoxicity and cognitive deterioration via enhanced insulin signaling in rats[J]. Molecules, 2019, 24(10): 1992. doi: 10.3390/molecules24101992
|
[45] |
Mahmoudiandehkordi S, Arnold M, Nho K, et al. Altered bile acid profile associates with cognitive impairment in Alzheimer's disease-An emerging role for gut microbiome[J]. Alzheimers Dement, 2019, 15(1): 76–92. doi: 10.1016/j.jalz.2018.07.217
|
[46] |
Suhre K, Meisinger C, Döring A, et al. Metabolic footprint of diabetes: a multiplatform metabolomics study in an epidemiological setting[J]. PLoS One, 2010, 5(11): e13953. doi: 10.1371/journal.pone.0013953
|
[47] |
Mertens KL, Kalsbeek A, Soeters MR, et al. Bile acid signaling pathways from the enterohepatic circulation to the central nervous system[J]. Front Neurosci, 2017, 11: 617. doi: 10.3389/fnins.2017.00617
|
1. | Pribac M, Motataianu A, Andone S, et al. Bridging the Gap: Harnessing Plant Bioactive Molecules to Target Gut Microbiome Dysfunctions in Amyotrophic Lateral Sclerosis. Curr Issues Mol Biol, 2024, 46(5): 4471-4488. DOI:10.3390/cimb46050271 |
2. | Feng C, Li N, Gao G, et al. Dynamic Changes of the Gut Microbiota and Its Functional Metagenomic Potential during the Development of Non-Small Cell Lung Cancer. Int J Mol Sci, 2024, 25(7): 3768. DOI:10.3390/ijms25073768 |
3. | Noor Eddin A, Alfuwais M, Noor Eddin R, et al. Gut-Modulating Agents and Amyotrophic Lateral Sclerosis: Current Evidence and Future Perspectives. Nutrients, 2024, 16(5): 590. DOI:10.3390/nu16050590 |
4. | Ma YY, Li X, Yu JT, et al. Therapeutics for neurodegenerative diseases by targeting the gut microbiome: from bench to bedside. Transl Neurodegener, 2024, 13(1): 12. DOI:10.1186/s40035-024-00404-1 |
5. | Loh JS, Mak WQ, Tan LKS, et al. Microbiota-gut-brain axis and its therapeutic applications in neurodegenerative diseases. Signal Transduct Target Ther, 2024, 9(1): 37. DOI:10.1038/s41392-024-01743-1 |
6. | Guo K, Figueroa-Romero C, Noureldein MH, et al. Gut microbiome correlates with plasma lipids in amyotrophic lateral sclerosis. Brain, 2024, 147(2): 665-679. DOI:10.1093/brain/awad306 |
7. | Goutman SA, Savelieff MG, Jang DG, et al. The amyotrophic lateral sclerosis exposome: recent advances and future directions. Nat Rev Neurol, 2023, 19(10): 617-634. DOI:10.1038/s41582-023-00867-2 |