Citation: | Yuanyuan Wang, Liya Liu, Mingyan Lin. Psychiatric risk gene transcription factor 4 preferentially regulates cortical interneuron neurogenesis during early brain development[J]. The Journal of Biomedical Research, 2022, 36(4): 242-254. doi: 10.7555/JBR.36.20220074 |
[1] |
Massari ME, Murre C. Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms[J]. Mol Cell Biol, 2000, 20(2): 429–440. doi: 10.1128/MCB.20.2.429-440.2000
|
[2] |
Jung M, Häberle BM, Tschaikowsky T, et al. Analysis of the expression pattern of the schizophrenia-risk and intellectual disability gene TCF4 in the developing and adult brain suggests a role in development and plasticity of cortical and hippocampal neurons[J]. Mol Autism, 2018, 9: 20. doi: 10.1186/s13229-018-0200-1
|
[3] |
Kennedy AJ, Rahn EJ, Paulukaitis BS, et al. Tcf4 regulates synaptic plasticity, DNA methylation, and memory function[J]. Cell Rep, 2016, 16(10): 2666–2685. doi: 10.1016/j.celrep.2016.08.004
|
[4] |
Teixeira JR, Szeto RA, Carvalho VMA, et al. Transcription factor 4 and its association with psychiatric disorders[J]. Transl Psychiatry, 2021, 11(1): 19. doi: 10.1038/s41398-020-01138-0
|
[5] |
Marín O, Rubenstein JLR. A long, remarkable journey: tangential migration in the telencephalon[J]. Nat Rev Neurosci, 2001, 2(11): 780–790. doi: 10.1038/35097509
|
[6] |
Mesman S, Bakker R, Smidt MP. Tcf4 is required for correct brain development during embryogenesis[J]. Mol Cell Neurosci, 2020, 106: 103502. doi: 10.1016/j.mcn.2020.103502
|
[7] |
Shipley MM, Mangold CA, Szpara ML. Differentiation of the SH-SY5Y human neuroblastoma cell line[J]. J Vis Exp, 2016, (108): 53193. doi: 10.3791/53193
|
[8] |
Forrest MP, Hill MJ, Kavanagh DH, et al. The psychiatric risk gene Transcription factor 4 (TCF4) regulates neurodevelopmental pathways associated with schizophrenia, autism, and intellectual disability[J]. Schizophr Bull, 2018, 44(5): 1100–1110. doi: 10.1093/schbul/sbx164
|
[9] |
Xia H, Jahr FM, Kim NK, et al. Building a schizophrenia genetic network: transcription factor 4 regulates genes involved in neuronal development and schizophrenia risk[J]. Hum Mol Genet, 2018, 27(18): 3246–3256. doi: 10.1093/hmg/ddy222
|
[10] |
Zhong S, Zhang S, Fan X, et al. A single-cell RNA-seq survey of the developmental landscape of the human prefrontal cortex[J]. Nature, 2018, 555(7697): 524–528. doi: 10.1038/nature25980
|
[11] |
Fan X, Dong J, Zhong S, et al. Spatial transcriptomic survey of human embryonic cerebral cortex by single-cell RNA-seq analysis[J]. Cell Res, 2018, 28(7): 730–745. doi: 10.1038/s41422-018-0053-3
|
[12] |
Liu Y, Liu H, Sauvey C, et al. Directed differentiation of forebrain GABA interneurons from human pluripotent stem cells[J]. Nat Protoc, 2013, 8(9): 1670–1679. doi: 10.1038/nprot.2013.106
|
[13] |
Stuart T, Butler A, Hoffman P, et al. Comprehensive integration of single-cell data[J]. Cell, 2019, 177(7): 1888–1902.e21. doi: 10.1016/j.cell.2019.05.031
|
[14] |
Landt SG, Marinov GK, Kundaje A, et al. ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia[J]. Genome Res, 2012, 22(9): 1813–1831. doi: 10.1101/gr.136184.111
|
[15] |
Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform[J]. Bioinformatics, 2010, 26(5): 589–595. doi: 10.1093/bioinformatics/btp698
|
[16] |
Rozowsky J, Euskirchen G, Auerbach RK, et al. PeakSeq enables systematic scoring of ChIP-seq experiments relative to controls[J]. Nat Biotechnol, 2009, 27(1): 66–75. doi: 10.1038/nbt.1518
|
[17] |
Ramírez F, Ryan DP, Grüning B, et al. deepTools2: a next generation web server for deep-sequencing data analysis[J]. Nucleic Acids Res, 2016, 44(W1): W160–W165. doi: 10.1093/nar/gkw257
|
[18] |
Robinson JT, Thorvaldsdóttir H, Winckler W, et al. Integrative genomics viewer[J]. Nat Biotechnol, 2011, 29(1): 24–26. doi: 10.1038/nbt.1754
|
[19] |
Yu G, Wang L, He Q. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization[J]. Bioinformatics, 2015, 31(14): 2382–2383. doi: 10.1093/bioinformatics/btv145
|
[20] |
McLean CY, Bristor D, Hiller M, et al. GREAT improves functional interpretation of cis-regulatory regions[J]. Nat Biotechnol, 2010, 28(5): 495–501. doi: 10.1038/nbt.1630
|
[21] |
Heinz S, Benner C, Spann N, et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities[J]. Mol Cell, 2010, 38(4): 576–589. doi: 10.1016/j.molcel.2010.05.004
|
[22] |
Wu T, Hu E, Xu S, et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data[J]. Innovation, 2021, 2(3): 100141. doi: 10.1016/j.xinn.2021.100141
|
[23] |
Janky R, Verfaillie A, Imrichová H, et al. iRegulon: from a gene list to a gene regulatory network using large motif and track collections[J]. PLoS Comput Biol, 2014, 10(7): e1003731. doi: 10.1371/journal.pcbi.1003731
|
[24] |
Bailey TL, Gribskov M. Combining evidence using p-values: application to sequence homology searches[J]. Bioinformatics, 1998, 14(1): 48–54. doi: 10.1093/bioinformatics/14.1.48
|
[25] |
Ding J, Hu H, Li X. SIOMICS: a novel approach for systematic identification of motifs in ChIP-seq data[J]. Nucleic Acids Res, 2014, 42(5): e35. doi: 10.1093/nar/gkt1288
|
[26] |
Fromer M, Pocklington AJ, Kavanagh DH, et al. De novo mutations in schizophrenia implicate synaptic networks[J]. Nature, 2014, 506(7487): 179–184. doi: 10.1038/nature12929
|
[27] |
Xiang Y, Tanaka Y, Patterson B, et al. Fusion of regionally specified hpsc-derived organoids models human brain development and interneuron migration[J]. Cell Stem Cell, 2017, 21(3): 383–398.e7. doi: 10.1016/j.stem.2017.07.007
|
[28] |
Yan L, Guo H, Hu B, et al. Epigenomic landscape of human fetal brain, heart, and liver[J]. J Biol Chem, 2016, 291(9): 4386–4398. doi: 10.1074/jbc.M115.672931
|
[29] |
Parnavelas JG, Anderson SA, Lavdas AA, et al. The contribution of the ganglionic eminence to the neuronal cell types of the cerebral cortex[J]. Novartis Found Symp, 2000, 228: 129–139. doi: 10.1002/0470846631.ch10
|
[30] |
Nakajima K. GABAergic interneuron migration and the evolution of the neocortex[J]. Dev Growth Differ, 2012, 54(3): 366–372. doi: 10.1111/j.1440-169X.2012.01351.x
|
[31] |
Tau GZ, Peterson BS. Normal development of brain circuits[J]. Neuropsychopharmacology, 2010, 35(1): 147–168. doi: 10.1038/npp.2009.115
|
[32] |
Skene NG, Bryois J, Bakken TE, et al. Genetic identification of brain cell types underlying schizophrenia[J]. Nat Genet, 2018, 50(6): 825–833. doi: 10.1038/s41588-018-0129-5
|
[33] |
Birey F, Andersen J, Makinson CD, et al. Assembly of functionally integrated human forebrain spheroids[J]. Nature, 2017, 545(7652): 54–59. doi: 10.1038/nature22330
|
[34] |
Sepp M, Kannike K, Eesmaa A, et al. Functional diversity of human basic helix-loop-helix transcription factor tcf4 isoforms generated by alternative 5' exon usage and splicing[J]. PLoS One, 2011, 6(7): e22138. doi: 10.1371/journal.pone.0022138
|
[35] |
Gao R, Penzes P. Common mechanisms of excitatory and inhibitory imbalance in schizophrenia and autism spectrum disorders[J]. Curr Mol Med, 2015, 15(2): 146–167. doi: 10.2174/1566524015666150303003028
|
[36] |
Wang P, Lin M, Pedrosa E, et al. CRISPR/Cas9-mediated heterozygous knockout of the autism gene CHD8 and characterization of its transcriptional networks in neurodevelopment[J]. Mol Autism, 2015, 6(1): 55. doi: 10.1186/s13229-015-0048-6
|
[37] |
Bertrand N, Castro DS, Guillemot F. Proneural genes and the specification of neural cell types[J]. Nat Revs Neurosci, 2002, 3(7): 517–530. doi: 10.1038/nrn874
|
[38] |
Chinenov Y, Kerppola TK. Close encounters of many kinds: Fos-Jun interactions that mediate transcription regulatory specificity[J]. Oncogene, 2001, 20(19): 2438–2452. doi: 10.1038/sj.onc.1204385
|
[39] |
Wittmann M-T, Katada S, Sock E, et al. scRNA sequencing uncovers a TCF4-dependent transcription factor network regulating commissure development in mouse[J]. Development, 2021, 148(14): dev196022. doi: 10.1242/dev.196022
|
![]() |
![]() |