Citation: | Xiangdong Hua, Yan Zhang, Juan Xu, Lu Xu, Yaqian Shi, Dazhen Yang, Xiaoyan Gu, Sumin Wang, Xuemei Jia, Feng Xu, Jie Chen, Xiaoyan Ying. Peptidome analysis of human intrauterine adhesion tissues and the identification of antifibrotic peptide[J]. The Journal of Biomedical Research, 2022, 36(4): 280-296. doi: 10.7555/JBR.36.20220059 |
[1] |
March CM. Asherman's syndrome[J]. Semin Reprod Med, 2011, 29(2): 83–94. doi: 10.1055/s-0031-1272470
|
[2] |
Gargett CE, Healy DL. Generating receptive endometrium in Asherman's syndrome[J]. J Hum Reprod Sci, 2011, 4(1): 49–52. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3136070/
|
[3] |
Bosteels J, Weyers S, D'Hooghe TM, et al. Anti-adhesion therapy following operative hysteroscopy for treatment of female subfertility[J]. Cochrane Database Syst Rev, 2017, 11(11): CD011110. doi: 10.1002/14651858.CD011110.pub2
|
[4] |
Zhao J, Zhang Q, Wang Y, et al. Rat bone marrow mesenchymal stem cells improve regeneration of thin endometrium in rat[J]. Fertil Steril, 2014, 101(2): 587–594.e3. doi: 10.1016/j.fertnstert.2013.10.053
|
[5] |
Nagori CB, Panchal SY, Patel H. Endometrial regeneration using autologous adult stem cells followed by conception by in vitro fertilization in a patient of severe Asherman's syndrome[J]. J Hum Reprod Sci, 2011, 4(1): 43–48. doi: 10.4103/0974-1208.82360
|
[6] |
Ye L, Mayberry R, Lo CY, et al. Generation of human female reproductive tract epithelium from human embryonic stem cells[J]. PLoS One, 2011, 6(6): e21136. doi: 10.1371/journal.pone.0021136
|
[7] |
March CM. Management of Asherman's syndrome[J]. Reprod Biomed Online, 2011, 23(1): 63–76. doi: 10.1016/j.rbmo.2010.11.018
|
[8] |
Kuramoto G, Takagi S, Ishitani K, et al. Preventive effect of oral mucosal epithelial cell sheets on intrauterine adhesions[J]. Hum Reprod, 2015, 30(2): 406–416. doi: 10.1093/humrep/deu326
|
[9] |
Li J, Cen B, Chen S, et al. MicroRNA-29b inhibits TGF-β1-induced fibrosis via regulation of the TGF-β1/Smad pathway in primary human endometrial stromal cells[J]. Mol Med Rep, 2016, 13(5): 4229–4237. doi: 10.3892/mmr.2016.5062
|
[10] |
Salma U, Xue M, Ali Sheikh MS, et al. Role of Transforming growth factor-β1 and smads signaling pathway in intrauterine adhesion[J]. Mediators Inflamm, 2016, 2016: 4158287. doi: 10.1155/2016/4158287
|
[11] |
Zhu Y, Hu J, Yu T, et al. High molecular weight hyaluronic acid inhibits fibrosis of endometrium[J]. Med Sci Monit, 2016, 22: 3438–3445. doi: 10.12659/MSM.896028
|
[12] |
Wang X, Ma N, Sun Q, et al. Elevated NF-κB signaling in Asherman syndrome patients and animal models[J]. Oncotarget, 2017, 8(9): 15399–15406. doi: 10.18632/oncotarget.14853
|
[13] |
Hu S, Li Y, Meng W, et al. Effects of Fukang oral liquid on the prevention of intrauterine adhesion and expressions of TGF-β1, PAI-1 and MMP-9 in endometrium of rats[J]. J Sichuan Univ (Med Sci Ed), 2013, 44(4): 540–544. https://pubmed.ncbi.nlm.nih.gov/24059104/
|
[14] |
Ries C. Cytokine functions of TIMP-1[J]. Cell Mol Life Sci, 2014, 71(4): 659–672. doi: 10.1007/s00018-013-1457-3
|
[15] |
Liu X, Duan H, Zhang H, et al. Integrated data set of microRNAs and mRNAs involved in severe intrauterine adhesion[J]. Reprod Sci, 2016, 23(10): 1340–1347. doi: 10.1177/1933719116638177
|
[16] |
Du Q, Xie N, Huang R. Recent development of peptide drugs and advance on theory and methodology of peptide inhibitor design[J]. Med Chem, 2015, 11(3): 235–247. doi: 10.2174/1573406411666141229163355
|
[17] |
Richard J. Challenges in oral peptide delivery: lessons learnt from the clinic and future prospects[J]. Ther Deliv, 2017, 8(8): 663–684. doi: 10.4155/tde-2017-0024
|
[18] |
Vial C, Gutiérrez J, Santander C, et al. Decorin interacts with connective tissue growth factor (CTGF)/CCN2 by LRR12 inhibiting its biological activity[J]. J Biol Chem, 2011, 286(27): 24242–24252. doi: 10.1074/jbc.M110.189365
|
[19] |
Kanasaki K, Koya D, Sugimoto T, et al. N-Acetyl-seryl-aspartyl-lysyl-proline inhibits TGF-β-mediated plasminogen activator inhibitor-1 expression via inhibition of Smad pathway in human mesangial cells[J]. J Am Soc Nephrol, 2003, 14(4): 863–872. doi: 10.1097/01.ASN.0000057544.95569.EC
|
[20] |
Zhang L, Wang X, Feng M, et al. Peptidomics analysis reveals peptide pdcryab1 inhibits doxorubicin-induced cardiotoxicity[J]. Oxid Med Cell Longev, 2020, 2020: 7182428. doi: 10.1155/2020/7182428
|
[21] |
Kanasaki K. N-acetyl-seryl-aspartyl-lysyl-proline is a valuable endogenous antifibrotic peptide for kidney fibrosis in diabetes: an update and translational aspects[J]. J Diabetes Investig, 2020, 11(3): 516–526. doi: 10.1111/jdi.13219
|
[22] |
The American Fertility Society. The American Fertility Society classifications of adnexal adhesions, distal tubal occlusion, tubal occlusion secondary to tubal ligation, tubal pregnancies, müllerian anomalies and intrauterine adhesions[J]. Fertil Steril, 1988, 49(6): 944–955. doi: 10.1016/S0015-0282(16)59942-7
|
[23] |
Neame PJ, Kay CJ, McQuillan DJ, et al. Independent modulation of collagen fibrillogenesis by decorin and lumican[J]. Cell Mol Life Sci, 2000, 57(5): 859–863. doi: 10.1007/s000180050048
|
[24] |
Berezovsky IN, Guarnera E, Zheng Z. Basic units of protein structure, folding, and function[J]. Prog Biophys Mol Biol, 2017, 128: 85–99. doi: 10.1016/j.pbiomolbio.2016.09.009
|
[25] |
Stakhneva EM, Meshcheryakova IA, Demidov EA, et al. A proteomic study of atherosclerotic plaques in men with coronary atherosclerosis[J]. Diagnostics (Basel), 2019, 9(4): 177. doi: 10.3390/diagnostics9040177
|
[26] |
Krishnan A, Li X, Kao WY, et al. Lumican, an extracellular matrix proteoglycan, is a novel requisite for hepatic fibrosis[J]. Lab Invest, 2012, 92(12): 1712–1725. doi: 10.1038/labinvest.2012.121
|
[27] |
Zhang Q, Xiang S, Liu Q, et al. PPARγ antagonizes hypoxia-induced activation of hepatic stellate cell through cross mediating PI3K/AKT and cGMP/PKG signaling[J]. PPAR Res, 2018, 2018: 6970407. doi: 10.1155/2018/6970407
|
[28] |
Kim KK, Sheppard D, Chapman HA. TGF-β1 signaling and tissue fibrosis[J]. Cold Spring Harb Perspect Biol, 2018, 10(4): a022293. doi: 10.1101/cshperspect.a022293
|
[29] |
Giannandrea M, Parks WC. Diverse functions of matrix metalloproteinases during fibrosis[J]. Dis Model Mech, 2014, 7(2): 193–203. doi: 10.1242/dmm.012062
|
[30] |
Morikawa M, Derynck R, Miyazono K. TGF-β and the TGF-β family: context-dependent roles in cell and tissue physiology[J]. Cold Spring Harb Perspect Biol, 2016, 8(5): a021873. doi: 10.1101/cshperspect.a021873
|
![]() |
![]() |