4.6

CiteScore

2.2

Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Trupti N. Patel, Pavan Kumar Dhanyamraju. Role of aberrant Sonic hedgehog signaling pathway in cancers and developmental anomalies[J]. The Journal of Biomedical Research, 2022, 36(1): 1-9. DOI: 10.7555/JBR.35.20210139
Citation: Trupti N. Patel, Pavan Kumar Dhanyamraju. Role of aberrant Sonic hedgehog signaling pathway in cancers and developmental anomalies[J]. The Journal of Biomedical Research, 2022, 36(1): 1-9. DOI: 10.7555/JBR.35.20210139

Role of aberrant Sonic hedgehog signaling pathway in cancers and developmental anomalies

More Information
  • Corresponding author:

    Pavan Kumar Dhanyamraju, Department of Pharmacology, Penn State University College of Medicine and Penn State Cancer Institute, Hershey, PA 17033, USA. Tel: +1-6096474712, E-mail: biopan@gmail.com

  • Received Date: August 22, 2021
  • Revised Date: September 08, 2021
  • Accepted Date: September 12, 2021
  • Available Online: December 14, 2021
  • Development is a sophisticated process maintained by various signal transduction pathways, including the Hedgehog (Hh) pathway. Several important functions are executed by the Hh signaling cascade such as organogenesis, tissue regeneration, and tissue homeostasis, among various others. Considering the multiple functions carried out by this pathway, any mutation causing aberrant Hh signaling may lead to myriad developmental abnormalities besides cancers. In the present review article, we explored a wide range of diseases caused by aberrant Hh signaling, including developmental defects and cancers. Finally, we concluded this mini-review with various treatment strategies for Hh-induced diseases.
  • [1]
    Choudhry Z, Rikani AA, Choudhry AM, et al. Sonic hedgehog signalling pathway: a complex network[J]. Ann Neurosci, 2014, 21(1): 28–31. doi: 10.5214/ans.0972.7531.210109
    [2]
    Varjosalo M, Taipale J. Hedgehog: functions and mechanisms[J]. Genes Dev, 2008, 22(18): 2454–2472. doi: 10.1101/gad.1693608
    [3]
    Nüsslein-Volhard C, Wieschaus E. Mutations affecting segment number and polarity in Drosophila[J]. Nature, 1980, 287(5785): 795–801. doi: 10.1038/287795a0
    [4]
    Petrova R, Joyner AL. Roles for Hedgehog signaling in adult organ homeostasis and repair[J]. Development, 2014, 141(18): 3445–3457. doi: 10.1242/dev.083691
    [5]
    Franco HL, Yao HHC. Sex and hedgehog: roles of genes in the hedgehog signaling pathway in mammalian sexual differentiation[J]. Chromosom Res, 2012, 20(1): 247–258. doi: 10.1007/s10577-011-9254-z
    [6]
    Anderson E, Peluso S, Lettice LA, et al. Human limb abnormalities caused by disruption of hedgehog signaling[J]. Trends Genet, 2012, 2(8): 364–373. doi: 10.1016/j.tig.2012.03.012
    [7]
    Singh S, Tokhunts R, Baubet V, et al. Sonic hedgehog mutations identified in holoprosencephaly patients can act in a dominant negative manner[J]. Hum Genet, 2009, 125(1): 95–103. doi: 10.1007/s00439-008-0599-0
    [8]
    Roessler E, Belloni E, Gaudenz K, et al. Mutations in the human Sonic Hedgehog gene cause holoprosencephaly[J]. Nat Genet, 1996, 14(3): 357–360. doi: 10.1038/ng1196-357
    [9]
    Garcia ADR, Han YG, Triplett JW, et al. The elegance of sonic hedgehog: emerging novel functions for a classic morphogen[J]. J Neurosci, 2018, 38(44): 9338–9345. doi: 10.1523/JNEUROSCI.1662-18.2018
    [10]
    Pan A, Chang L, Nguyen A, et al. A review of hedgehog signaling in cranial bone development[J]. Front Physiol, 2013, 4: 61. doi: 10.3389/fphys.2013.00061
    [11]
    Dellovade T, Romer JT, Curran T, et al. The hedgehog pathway and neurological disorders[J]. Annu Rev Neurosci, 2006, 29: 539–563. doi: 10.1146/annurev.neuro.29.051605.112858
    [12]
    Dhanyamraju PK, Patel TN, Dovat S. Medulloblastoma: "onset of the molecular era"[J]. Mol Biol Rep, 2020, 47(12): 9931–9937. doi: 10.1007/s11033-020-05971-w
    [13]
    Skoda AM, Simovic D, Karin V, et al. The role of the Hedgehog signaling pathway in cancer: a comprehensive review[J]. Bosn J Basic Med Sci, 2018, 18(1): 8–20. doi: 10.17305/bjbms.2018.2756
    [14]
    Doheny D, Manore SG, Wong GL, et al. Hedgehog signaling and truncated GLI1 in cancer[J]. Cells, 2020, 9(9): 2114. doi: 10.3390/cells9092114
    [15]
    Wheway G, Nazlamova L, Hancock JT. Signaling through the primary cilium[J]. Front Cell Dev Biol, 2018, 6: 8. doi: 10.3389/fcell.2018.00008
    [16]
    Goetz SC, Ocbina PJR, Anderson KV. The primary cilium as a Hedgehog signal transduction machine[J]. Methods Cell Biol, 2009, 94: 199–222. doi: 10.1016/S0091-679X(08)94010-3
    [17]
    Sasai N, Toriyama M, Kondo T. Hedgehog signal and genetic disorders[J]. Front Genet, 2019, 10: 1103. doi: 10.3389/fgene.2019.01103
    [18]
    Briscoe J, Thérond PP. The mechanisms of Hedgehog signalling and its roles in development and disease[J]. Nat Rev Mol Cell Biol, 2013, 14(7): 416–429. doi: 10.1038/nrm3598
    [19]
    Gupta S, Takebe N, LoRusso P. Review: targeting the Hedgehog pathway in cancer[J]. Ther Adv Med Oncol, 2010, 2(4): 237–250. doi: 10.1177/1758834010366430
    [20]
    Vaillant C, Monard D. SHH pathway and cerebellar development[J]. Cerebellum, 2009, 8(3): 291–301. doi: 10.1007/s12311-009-0094-8
    [21]
    Dahmane N, Altaba ARI. Sonic hedgehog regulates the growth and patterning of the cerebellum[J]. Development, 1999, 126(14): 3089–3100. doi: 10.1242/dev.126.14.3089
    [22]
    Huang SY, Yang JY. Targeting the hedgehog pathway in pediatric medulloblastoma[J]. Cancers (Basel), 2015, 7(4): 2110–2123. doi: 10.3390/cancers7040880
    [23]
    Romer JT, Kimura H, Magdaleno S, et al. Suppression of the Shh pathway using a small molecule inhibitor eliminates medulloblastoma in Ptc1+/−p53−/− mice[J]. Cancer Cell, 2004, 6(3): 229–240. doi: 10.1016/j.ccr.2004.08.019
    [24]
    Millard NE, De Braganca KC. Medulloblastoma[J]. J Child Neurol, 2016, 31(12): 1341–1353. doi: 10.1177/0883073815600866
    [25]
    Northcott PA, Shih DJH, Peacock J, et al. Subgroup-specific structural variation across 1,000 medulloblastoma genomes[J]. Nature, 2012, 488(7409): 49–56. doi: 10.1038/nature11327
    [26]
    Dika E, Scarfì F, Ferracin M, et al. Basal cell carcinoma: a comprehensive review[J]. Int J Mol Sci, 2020, 21: 5572. doi: 10.3390/ijms21155572
    [27]
    Pellegrini C, Maturo MG, Di Nardo L, et al. Understanding the molecular genetics of basal cell carcinoma[J]. Int J Mol Sci, 2017, 18: 2485. doi: 10.3390/ijms18112485
    [28]
    Sari IN, Phi LTH, Jun N, et al. Hedgehog signaling in cancer: a prospective therapeutic target for eradicating cancer stem cells[J]. Cells, 2018, 7(11): 208. doi: 10.3390/cells7110208
    [29]
    Takahashi C, Kanazawa N, Yoshikawa Y, et al. Germline PTCH1 mutations in Japanese basal cell nevus syndrome patients[J]. J Hum Genet, 2009, 54(7): 403–408. doi: 10.1038/jhg.2009.55
    [30]
    Patankar AP, Kshirsagar RA, Dugal A, et al. Gorlin-Goltz syndrome: a series of three cases[J]. Natl J Maxillofac Surg, 2014, 5: 209–212. doi: 10.4103/0975-5950.154839
    [31]
    Saridaki Z, Liloglou T, Zafiropoulos A, et al. Mutational analysis of CDKN2A genes in patients with squamous cell carcinoma of the skin[J]. Br J Dermatol, 2003, 148(4): 638–648. doi: 10.1046/j.1365-2133.2003.05230.x
    [32]
    Peer E, Tesanovic S, Aberger F. Next-generation hedgehog/GLI pathway inhibitors for cancer therapy[J]. Cancers (Basel), 2019, 11(4): 538. doi: 10.3390/cancers11040538
    [33]
    Chen C, Garcia HD, Scheer M, et al. Current and future treatment strategies for rhabdomyosarcoma[J]. Front Oncol, 2019, 9: 1458. doi: 10.3389/fonc.2019.01458
    [34]
    Gleditsch K, Peñas J, Mercer D, et al. Intratumoral translocation positive heterogeneity in pediatric alveolar rhabdomyosarcoma tumors correlates to patient survival prognosis[J]. Front Cell Dev Biol, 2020, 8: 564136. doi: 10.3389/fcell.2020.564136
    [35]
    Roma J, Almazán-Moga A, de Toledo JS, et al. Notch, Wnt, and Hedgehog pathways in rhabdomyosarcoma: from single pathways to an integrated network[J]. Sarcoma, 2012, 2012: 695603. doi: 10.1155/2012/695603
    [36]
    Hahn H, Wojnowski L, Zimmer AM, et al. Rhabdomyosarcomas and radiation hypersensitivity in a mouse model of Gorlin syndrome[J]. Nat Med, 1998, 4(5): 619–622. doi: 10.1038/nm0598-619
    [37]
    MacDonald TJ. Hedgehog pathway in pediatric cancers: they're not just for brain tumors anymore[J]. Am Soc Clin Oncol Educ B, 2012, 32: 605–609. doi: 10.14694/edbook_am.2012.32.61
    [38]
    Bridge JA, Liu J, Qualman SJ, et al. Genomic gains and losses are similar in genetic and histologic subsets of rhabdomyosarcoma, whereas amplification predominates in embryonal with anaplasia and alveolar subtypes[J]. Genes Chromosom Cancer, 2002, 33(3): 310–321. doi: 10.1002/gcc.10026
    [39]
    Bridge JA, Liu J, Weibolt V, et al. Novel genomic imbalances in embryonal rhabdomyosarcoma revealed by comparative genomic hybridization and fluorescence in situ hybridization: an intergroup rhabdomyosarcoma study[J]. Genes Chromosom Cancer, 2000, 27(4): 337–344. doi: 10.1002/(SICI)1098-2264(200004)27:4<337:AID-GCC1>3.0.CO;2-1
    [40]
    Calzada-Wack J, Kappler R, Schnitzbauer U, et al. Unbalanced overexpression of the mutant allele in murine Patched mutants[J]. Carcinogenesis, 2002, 23(5): 727–733. doi: 10.1093/carcin/23.5.727
    [41]
    Oue T, Yoneda A, Uehara S, et al. Increased expression of the hedgehog signaling pathway in pediatric solid malignancies[J]. J Pediatr Surg, 2010, 45(2): 387–392. doi: 10.1016/j.jpedsurg.2009.10.081
    [42]
    Zibat A, Missiaglia E, Rosenberger A, et al. Activation of the hedgehog pathway confers a poor prognosis in embryonal and fusion gene-negative alveolar rhabdomyosarcoma[J]. Oncogene, 2010, 29(48): 6323–6330. doi: 10.1038/onc.2010.368
    [43]
    Almazán-Moga A, Zarzosa P, Molist C, et al. Ligand-dependent hedgehog pathway activation in rhabdomyosarcoma: the oncogenic role of the ligands[J]. Br J Cancer, 2017, 117(9): 1314–1325. doi: 10.1038/bjc.2017.305
    [44]
    Huang F, Zhuan-Sun Y, Zhuang Y, et al. Inhibition of hedgehog signaling depresses self-renewal of pancreatic cancer stem cells and reverses chemoresistance[J]. Int J Oncol, 2012, 41(5): 1707–1714. doi: 10.3892/ijo.2012.1597
    [45]
    Jones S, Zhang X, Parsons DW, et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses[J]. Science, 2008, 321(5897): 1801–1806. doi: 10.1126/science.1164368
    [46]
    Feldmann G, Dhara S, Fendrich V, et al. Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases: a new paradigm for combination therapy in solid cancers[J]. Cancer Res, 2007, 67(5): 2187–2196. doi: 10.1158/0008-5472.CAN-06-3281
    [47]
    Gu D, Schlotman KE, Xie J. Deciphering the role of hedgehog signaling in pancreatic cancer[J]. J Biomed Res, 2016, 30(5): 353–360. doi: 10.7555/JBR.30.20150107
    [48]
    Hogenson TL, Olson RLO, Fernandez-Zapico ME. Hedgehog signaling plays a dual role in pancreatic carcinogenesis[M]//Neoptolemos JP, Urrutia R, Abbruzzese JL, et al. Pancreatic Cancer. New York: Springer, 2018: 409–430.
    [49]
    Rhim AD, Oberstein PE, Thomas DH, et al. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma[J]. Cancer Cell, 2015, 25(6): 735–747. doi: 10.1016/j.ccr.2014.04.021
    [50]
    Bailey JM, Swanson BJ, Hamada T, et al. Sonic hedgehog promotes desmoplasia in pancreatic cancer[J]. Clin Cancer Res, 2008, 14(19): 5995–6004. doi: 10.1158/1078-0432.CCR-08-0291
    [51]
    Yauch RL, Gould SE, Scales SJ, et al. A paracrine requirement for hedgehog signalling in cancer[J]. Nature, 2008, 455(7211): 406–410. doi: 10.1038/nature07275
    [52]
    Hwang RF, Moore T, Arumugam T, et al. Cancer-associated stromal fibroblasts promote pancreatic tumor progression[J]. Cancer Res, 2008, 68(3): 918–926. doi: 10.1158/0008-5472.CAN-07-5714
    [53]
    Lee JJ, Perera RM, Wang H, et al. Stromal response to Hedgehog signaling restrains pancreatic cancer progression[J]. Proc Natl Acad Sci U S A, 2014, 111(30): E3091–E3100. doi: 10.1073/pnas.1411679111
    [54]
    Bailey JM, Mohr AM, Hollingsworth MA. Sonic hedgehog paracrine signaling regulates metastasis and lymphangiogenesis in pancreatic cancer[J]. Oncogene, 2009, 28(40): 3513–3525. doi: 10.1038/onc.2009.220
    [55]
    Ma Y, Yu W, Shrivastava A, et al. Sanguinarine inhibits pancreatic cancer stem cell characteristics by inducing oxidative stress and suppressing sonic hedgehog-Gli-Nanog pathway[J]. Carcinogenesis, 2017, 38(10): 1047–1056. doi: 10.1093/carcin/bgx070
    [56]
    Houghton CA. Sulforaphane: its "coming of age" as a clinically relevant nutraceutical in the prevention and treatment of chronic disease[J]. Oxid Med Cell Longev, 2019, 2019: 2716870. doi: 10.1155/2019/2716870
    [57]
    Juge N, Mithen RF, Traka M. Molecular basis for chemoprevention by sulforaphane: a comprehensive review[J]. Cell Mol Life Sci, 2007, 64(9): 1105–1127. doi: 10.1007/s00018-007-6484-5
    [58]
    Li SH, Fu J, Watkins DN, et al. Sulforaphane regulates self-renewal of pancreatic cancer stem cells through the modulation of Sonic hedgehog-GLI pathway[J]. Mol Cell Biochem, 2013, 373(1–2): 217–227. doi: 10.1007/s11010-012-1493-6
    [59]
    Liu H, Dong Y, Gao Y, et al. The fascinating effects of baicalein on cancer: a review[J]. Int J Mol Sci, 2016, 17(10): 1681. doi: 10.3390/ijms17101681
    [60]
    Song L, Chen X, Wang P, et al. Effects of baicalein on pancreatic cancer stem cells via modulation of sonic Hedgehog pathway[J]. Acta Biochim Biophys Sin (Shanghai), 2018, 50(6): 586–596. doi: 10.1093/abbs/gmy045
    [61]
    Yao J, An Y, Wei J, et al. Cyclopamine reverts acquired chemoresistance and down-regulates cancer stem cell markers in pancreatic cancer cell lines[J]. Swiss Med Wkly, 2011, 141: w13208. doi: 10.4414/smw.2011.13208
    [62]
    Gongal PA, French CR, Waskiewicz AJ. Aberrant forebrain signaling during early development underlies the generation of holoprosencephaly and coloboma[J]. Biochim Biophys Acta (BBA)-Mol Basis Dis, 2011, 1812(3): 390–401. doi: 10.1016/j.bbadis.2010.09.005
    [63]
    Dubourg C, Bendavid C, Pasquier L, et al. Holoprosencephaly[J]. Orphanet J Rare Dis, 2007, 2: 8. doi: 10.1186/1750-1172-2-8
    [64]
    Bertrand N, Dahmane N. Sonic hedgehog signaling in forebrain development and its interactions with pathways that modify its effects[J]. Trends Cell Biol, 2006, 16(11): 597–605. doi: 10.1016/j.tcb.2006.09.007
    [65]
    Jeong Y, Epstein DJ. Distinct regulators of Shh transcription in the floor plate and notochord indicate separate origins for these tissues in the mouse node[J]. Development, 2003, 130(16): 3891–3902. doi: 10.1242/dev.00590
    [66]
    Goodrich LV, Jung D, Higgins KM, et al. Overexpression of ptc1 inhibits induction of Shh target genes and prevents normal patterning in the neural tube[J]. Dev Biol, 1999, 211(2): 323–334. doi: 10.1006/dbio.1999.9311
    [67]
    Roessler E, El-Jaick KB, Dubourg C, et al. The mutational spectrum of holoprosencephaly-associated changes within the SHH gene in humans predicts loss-of-function through either key structural alterations of the ligand or its altered synthesis[J]. Hum Mutat, 2009, 30(10): E921–E935. doi: 10.1002/humu.21090
    [68]
    Petryk A, Graf D, Marcucio R. Holoprosencephaly: signaling interactions between the brain and the face, the environment and the genes, and the phenotypic variability in animal models and humans[J]. Wiley Interdiscip Rev Dev Biol, 2015, 4(1): 17–32. doi: 10.1002/wdev.161
    [69]
    McCarthy RA, Argraves WS. Megalin and the neurodevelopmental biology of sonic hedgehog and retinol[J]. J Cell Sci, 2003, 116(6): 955–960. doi: 10.1242/jcs.00313
    [70]
    Michaud EJ, Yoder BK. The primary cilium in cell signaling and cancer[J]. Cancer Res, 2006, 66(13): 6463–6467. doi: 10.1158/0008-5472.CAN-06-0462
    [71]
    Waters AM, Beales PL. Ciliopathies: an expanding disease spectrum[J]. Pediatr Nephrol, 2011, 26(7): 1039–1056. doi: 10.1007/s00467-010-1731-7
    [72]
    Hildebrandt F, Attanasio M, Otto E. Nephronophthisis: disease mechanisms of a ciliopathy[J]. J Am Soc Nephrol, 2009, 20(1): 23–35. doi: 10.1681/ASN.2008050456
    [73]
    Wolf MTF, Hildebrandt F. Nephronophthisis[J]. Pediatr Nephrol, 2011, 26(2): 181–194. doi: 10.1007/s00467-010-1585-z
    [74]
    Srivastava S, Molinari E, Raman S, et al. Many genes-one disease? Genetics of nephronophthisis (NPHP) and NPHP-associated disorders[J]. Front Pediatr, 2018, 5: 287. doi: 10.3389/fped.2017.00287
    [75]
    Attanasio M, Uhlenhaut NH, Sousa VH, et al. Loss of GLIS2 causes nephronophthisis in humans and mice by increased apoptosis and fibrosis[J]. Nat Genet, 2007, 39(8): 1018–1024. doi: 10.1038/ng2072
    [76]
    Adamiok-Ostrowska A, Piekiełko-Witkowska A. Ciliary genes in renal cystic diseases[J]. Cells, 2020, 9(4): 907. doi: 10.3390/cells9040907
    [77]
    Damerla RR, Cui C, Gabriel GC, et al. Novel Jbts17 mutant mouse model of Joubert syndrome with cilia transition zone defects and cerebellar and other ciliopathy related anomalies[J]. Hum Mol Genet, 2015, 24(14): 3994–4005. doi: 10.1093/hmg/ddv137
    [78]
    Toriyama M, Lee C, Wallingford JB. The ciliopathy-associated CPLANE proteins direct basal body recruitment of intraflagellar transport machinery[J]. Nat Genet, 2016, 48(6): 648–656. doi: 10.1038/ng.3558
    [79]
    Song B, Haycraft CJ, Seo HS, et al. Development of the post-natal growth plate requires intraflagellar transport proteins[J]. Dev Biol, 2007, 305(1): 202–216. doi: 10.1016/j.ydbio.2007.02.003
    [80]
    Tran PV, Haycraft CJ, Besschetnova TY, et al. THM1 negatively modulates mouse sonic hedgehog signal transduction and affects retrograde intraflagellar transport in cilia[J]. Nat Genet, 2016, 40(4): 403–410. doi: 10.1038/ng.105
    [81]
    Liu A, Wang B, Niswander LA. Mouse intraflagellar transport proteins regulate both the activator and repressor functions of Gli transcription factors[J]. Development, 2005, 132(13): 3103–3111. doi: 10.1242/dev.01894
    [82]
    Society for Maternal-Fetal Medicine (SMFM), Monteagudo A. Holoprosencephaly[J]. Am J Obstet Gynecol, 2020, 223(6): B13–B16. doi: 10.1016/j.ajog.2020.08.178
    [83]
    Pallangyo P, Lyimo F, Nicholaus P, et al. Semilobar holoprosencephaly in a 12-month-old baby boy born to a primigravida patient with type 1 diabetes mellitus: a case report[J]. J Med Case Rep, 2016, 10(1): 358. doi: 10.1186/s13256-016-1141-y
    [84]
    Tran BAP, Alexander T, Somani AK. Biochemical pathways and targeted therapies in basal cell carcinoma: a systematic review[J]. J Surg Dermatol, 2016, 2(1): 23–34. doi: 10.18282/jsd.v2.i1.64
    [85]
    Jain S, Song R, Xie J. Sonidegib: mechanism of action, pharmacology, and clinical utility for advanced basal cell carcinomas[J]. Onco Targets Ther, 2017, 10: 1645–1653. doi: 10.2147/OTT.S130910
  • Related Articles

    [1]Izzatullo Ziyoyiddin o`g`li Abdullaev, Ulugbek Gapparjanovich Gayibov, Sirojiddin Zoirovich Omonturdiev, Sobirova Fotima Azamjonovna, Sabina Narimanovna Gayibova, Takhir Fatikhovich Aripov. Molecular pathways in cardiovascular disease under hypoxia: Mechanisms, biomarkers, and therapeutic targets[J]. The Journal of Biomedical Research. DOI: 10.7555/JBR.38.20240387
    [2]Jing Xue, Linwei Zhang, Jingxian Tao, Xuexue Xie, Xi Wang, Linlin Wu, Shuhu Du, Ninghua Tan, Yang Jin, Jianming Ju, Junting Fan, Jun Wang, Fei Huan, Rong Gao. A novel bellidifolin intervention mitigates nonalcoholic fatty liver disease-like changes induced by bisphenol F[J]. The Journal of Biomedical Research, 2024, 38(5): 451-463. DOI: 10.7555/JBR.37.20230169
    [3]Zhang Jingdong, Fox Howard, Xiong Huangui. Severer nodular lesion in white matter than in gray matter in simian immunodeficiency virus-infected monkey, but not closely correlated with viral infection[J]. The Journal of Biomedical Research, 2020, 34(4): 292-300. DOI: 10.7555/JBR.33.20180047
    [4]Du Haina, Song Guoxin, Fang Mingzhi, Shu Yongqian, Zhao Xin, Zhu Lingjun. A meta-analysis of caspase-8 -652 6N del polymorphism and digestive tract cancer risk[J]. The Journal of Biomedical Research, 2019, 33(3): 173-180. DOI: 10.7555/JBR.32.20160030
    [5]Xinglong Yang, Jingdong Zhang, Lian Duan, Huangui Xiong, Yanping Jiang, Houcheng Liang. Microglia activation mediated by toll-like receptor-4 impairs brain white matter tracts in rats[J]. The Journal of Biomedical Research, 2018, 32(2): 136-144. DOI: 10.7555/JBR.32.20170033
    [6]Ji-Youn Kim, Ho-Gyu Choi, Hae-Miru Lee, Geum-A Lee, Kyung-A Hwang, Kyung-Chul Choi. Effects of bisphenol compounds on the growth and epithelial mesenchymal transition of MCF-7 CV human breast cancer cells[J]. The Journal of Biomedical Research, 2017, 31(4): 358-369. DOI: 10.7555/JBR.31.20160162
    [7]Qian Liu, Cheng Xu, Guixiang Ji, Hui Liu, Wentao Shao, Chunlan Zhang, Aihua Gu, Peng Zhao. Effect of exposure to ambient PM2.5 pollution on the risk of respiratory tract diseases: a meta-analysis of cohort studies[J]. The Journal of Biomedical Research, 2017, 31(2): 130-142. DOI: 10.7555/JBR.31.20160071
    [8]Alexander E. Berezin, Alexander A. Kremzer, Tatayna A. Samura. Circulating thrombospondin-2 in patients with moderate-to-severe chronic heart failure due to coronary artery disease[J]. The Journal of Biomedical Research, 2016, 30(1): 32-39. DOI: 10.7555/JBR.30.20140025
    [9]Yang Zhou, Ouyang Ling, Li Bo. Expression and significance of lysyl oxidase-like 1 and fibulin-5 in the cardinal ligament tissue of patients with pelvic floor dysfunction[J]. The Journal of Biomedical Research, 2013, 27(1): 23-28. DOI: 10.7555/JBR.27.20110142
    [10]Jing Cai, Yanhui Sheng, Shijiang Zhang, Wei Sun, Rong Yang, Liping Miao, Xiangqing Kong. Preliminary feasibility and hemodynamic performance of a newly-developed self-expanding bioprosthesis and 16-F delivery system in transcatheter aortic valve implantation in sheep[J]. The Journal of Biomedical Research, 2012, 26(3): 211-218. DOI: 10.7555/JBR.26.20120011
  • Cited by

    Periodical cited type(2)

    1. Lombard L, Sandoval-Denis M, Lamprecht SC, et al. Epitypification of Fusarium oxysporum - clearing the taxonomic chaos. Persoonia, 2019, 43: 1-47. DOI:10.3767/persoonia.2019.43.01
    2. Urbaniak C, van Dam P, Zaborin A, et al. Genomic Characterization and Virulence Potential of Two Fusarium oxysporum Isolates Cultured from the International Space Station. mSystems, 2019, 4(2): e00345-18. DOI:10.1128/mSystems.00345-18

    Other cited types(0)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return