• ISSN 1674-8301
  • CN 32-1810/R
Volume 35 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
Zhang Jiarong, Sun Hui, Pei Wei, Jiang Huijun, Chen Jin. Nanobody-based immunosensing methods for safeguarding public health[J]. The Journal of Biomedical Research, 2021, 35(4): 318-326. doi: 10.7555/JBR.35.20210108
Citation: Zhang Jiarong, Sun Hui, Pei Wei, Jiang Huijun, Chen Jin. Nanobody-based immunosensing methods for safeguarding public health[J]. The Journal of Biomedical Research, 2021, 35(4): 318-326. doi: 10.7555/JBR.35.20210108

Nanobody-based immunosensing methods for safeguarding public health

doi: 10.7555/JBR.35.20210108
More Information
  • Corresponding author: Jin Chen, School of Public Health, Nanjing Medical University, Longmian Avenue 101, Nanjing, Jiangsu 211166, China. Tel: +86-25-86868248, E-mail: jchen@njmu.edu.cn or okachen30@gmail.com
  • Received: 2021-07-01
  • Revised: 2021-07-13
  • Accepted: 2021-07-14
  • Published: 2021-07-28
  • Issue Date: 2021-07-28
  • Immunosensing methods are biosensing techniques based on specific recognition of an antigen–antibody immunocomplex, which have become commonly used in safeguarding public health. Taking advantage of antibody-related biotechnological advances, the utilization of an antigen-binding fragment of a heavy-chain-only antibody termed as 'nanobody' holds significant biomedical potential. Compared with the conventional full-length antibody, a single-domain nanobody retaining cognate antigen specificity possesses remarkable physicochemical stability and structural adaptability, which enables a flexible and efficient molecular design of the immunosensing strategy. This minireview aims to summarize the recent progress in immunosensing methods using nanobody targeting tumor markers, environmental pollutants, and foodborne microbes.

     

  • loading
  • [1]
    Balayan S, Chauhan N, Chandra R, et al. Recent advances in developing biosensing based platforms for neonatal sepsis[J]. Biosens Bioelectron, 2020, 169: 112552. doi: 10.1016/j.bios.2020.112552
    [2]
    Jiang XS, Li DY, Xu X, et al. Immunosensors for detection of pesticide residues[J]. Biosens Bioelectron, 2008, 23(11): 1577–1587. doi: 10.1016/j.bios.2008.01.035
    [3]
    Prattis I, Hui E, Gubeljak P, et al. Graphene for biosensing applications in point-of-care testing[J]. Trends Biotechnol, 2021, S0167-7799(21)00011-1. doi: 10.1016/j.tibtech.2021.01.005
    [4]
    Yao L, He L, Yang Y, et al. Nanobiochar paper based electrochemical immunosensor for fast and ultrasensitive detection of microcystin-LR[J]. Sci Total Environ, 2021, 750: 141692. doi: 10.1016/j.scitotenv.2020.141692
    [5]
    Ye L, Zhao G, Dou W. An electrochemical immunoassay for Escherichia coli O157: H7 using double functionalized Au@Pt/SiO2 nanocomposites and immune magnetic nanoparticles[J]. Talanta, 2018, 182: 354–362. doi: 10.1016/j.talanta.2018.01.095
    [6]
    Zhang S, Chen Y, Huang Y, et al. Design and application of proximity hybridization-based multiple stimuli-responsive immunosensing platform for ovarian cancer biomarker detection[J]. Biosens Bioelectron, 2020, 159: 112201. doi: 10.1016/j.bios.2020.112201
    [7]
    Cheng N, Song Y, Shi Q, et al. Au@Pd nanopopcorn and aptamer nanoflower assisted lateral flow strip for thermal detection of exosomes[J]. Anal Chem, 2019, 91(21): 13986–13993. doi: 10.1021/acs.analchem.9b03562
    [8]
    Fan Y, Shi S, Ma J, et al. A paper-based electrochemical immunosensor with reduced graphene oxide/thionine/gold nanoparticles nanocomposites modification for the detection of cancer antigen 125[J]. Biosens Bioelectron, 2019, 135: 1–7. doi: 10.1016/j.bios.2019.03.063
    [9]
    Xie Y, Zhang M, Bin Q, et al. Photoelectrochemical immunosensor based on CdSe@BiVO4 Co-sensitized TiO2 for carcinoembryonic antigen[J]. Biosens Bioelectron, 2020, 150: 111949. doi: 10.1016/j.bios.2019.111949
    [10]
    Hu M, Wang Y, Yang J, et al. Competitive electrochemical immunosensor for maduramicin detection by multiple signal amplification strategy via hemin@Fe-MIL-88NH2/AuPt[J]. Biosens Bioelectron, 2019, 142: 111554. doi: 10.1016/j.bios.2019.111554
    [11]
    Zhao W, Xu Y, Kang T, et al. Sandwich magnetically imprinted immunosensor for electrochemiluminescence ultrasensing diethylstilbestrol based on enhanced luminescence of Ru@SiO2 by CdTe@ZnS quantum dots[J]. Biosens Bioelectron, 2020, 155: 112102. doi: 10.1016/j.bios.2020.112102
    [12]
    Ruan X, Wang Y, Kwon E, et al. Nanomaterial-enhanced 3D-printed sensor platform for simultaneous detection of atrazine and acetochlor[J]. Biosens Bioelectron, 2021, 184: 113238. doi: 10.1016/j.bios.2021.113238
    [13]
    Kaushik S, Tiwari UK, Pal SS, et al. Rapid detection of Escherichia coli using fiber optic surface plasmon resonance immunosensor based on biofunctionalized Molybdenum disulfide (MoS2) nanosheets[J]. Biosens Bioelectron, 2019, 126: 501–509. doi: 10.1016/j.bios.2018.11.006
    [14]
    Farka Z, Juřík T, Kovář D, et al. Nanoparticle-based immunochemical biosensors and assays: recent advances and challenges[J]. Chem Rev, 2017, 117(15): 9973–10042. doi: 10.1021/acs.chemrev.7b00037
    [15]
    Kylilis N, Riangrungroj P, Lai HE, et al. Whole-cell biosensor with tunable limit of detection enables low-cost agglutination assays for medical diagnostic applications[J]. ACS Sens, 2019, 4(2): 370–378. doi: 10.1021/acssensors.8b01163
    [16]
    Chen K, Xue J, Zhou Q, et al. Coupling metal-organic framework nanosphere and nanobody for boosted photoelectrochemical immunoassay of Human Epididymis Protein 4[J]. Anal Chim Acta, 2020, 1107: 145–154. doi: 10.1016/j.aca.2020.02.011
    [17]
    Hamers-Casterman C, Atarhouch T, Muyldermans S, et al. Naturally occurring antibodies devoid of light chains[J]. Nature, 1993, 363(6428): 446–448. doi: 10.1038/363446a0
    [18]
    Ingram JR, Schmidt FI, Ploegh HL. Exploiting nanobodies' singular traits[J]. Annu Rev Immunol, 2018, 36: 695–715. doi: 10.1146/annurev-immunol-042617-053327
    [19]
    Li SF, Zhang W, Jiang P, et al. Nanobody against the E7 oncoprotein of human papillomavirus 16[J]. Mol Immunol, 2019, 109: 12–19. doi: 10.1016/j.molimm.2019.02.022
    [20]
    Cyster JG, Allen CDC. B cell responses: cell interaction dynamics and decisions[J]. Cell, 2019, 177(3): 524–540. doi: 10.1016/j.cell.2019.03.016
    [21]
    Liu M, Li L, Jin D, et al. Nanobody-A versatile tool for cancer diagnosis and therapeutics[J]. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2021, 13(4): e1697. doi: 10.1002/wnan.1697
    [22]
    Anderson GP, Liu JL, Hale ML, et al. Development of antiricin single domain antibodies toward detection and therapeutic reagents[J]. Anal Chem, 2008, 80(24): 9604–9611. doi: 10.1021/ac8019398
    [23]
    Buser DP, Schleicher KD, Prescianotto-Baschong C, et al. A versatile nanobody-based toolkit to analyze retrograde transport from the cell surface[J]. Proc Natl Acad Sci USA, 2018, 115(27): E6227–E6236. doi: 10.1073/pnas.1801865115
    [24]
    De Meyer T, Muyldermans S, Depicker A. Nanobody-based products as research and diagnostic tools[J]. Trends Biotechnol, 2014, 32(5): 263–270. doi: 10.1016/j.tibtech.2014.03.001
    [25]
    Jaria G, Calisto V, Otero M, et al. Monitoring pharmaceuticals in the aquatic environment using enzyme-linked immunosorbent assay (ELISA)-a practical overview[J]. Anal Bioanal Chem, 2020, 412(17): 3983–4008. doi: 10.1007/s00216-020-02509-8
    [26]
    Li D, Morisseau C, McReynolds CB, et al. Development of improved double-nanobody sandwich ELISAs for human soluble epoxide hydrolase detection in peripheral blood mononuclear cells of diabetic patients and the prefrontal cortex of multiple sclerosis patients[J]. Anal Chem, 2020, 92(10): 7334–7342. doi: 10.1021/acs.analchem.0c01115
    [27]
    Schroeder HW Jr, Cavacini L. Structure and function of immunoglobulins[J]. J Allergy Clin Immunol, 2010, 125(S2): S41–S52. doi: 10.1016/j.jaci.2009.09.046
    [28]
    He J, Ma S, Wu S, et al. Construction of immunomagnetic particles with high stability in stringent conditions by site-directed immobilization of multivalent nanobodies onto bacterial magnetic particles for the environmental detection of tetrabromobisphenol-A[J]. Anal Chem, 2020, 92(1): 1114–1121. doi: 10.1021/acs.analchem.9b04177
    [29]
    Wang F, Li Z, Yang Y, et al. Chemiluminescent enzyme immunoassay and bioluminescent enzyme immunoassay for tenuazonic acid mycotoxin by exploitation of nanobody and nanobody-nanoluciferase fusion[J]. Anal Chem, 2020, 92(17): 11935–11942. doi: 10.1021/acs.analchem.0c02338
    [30]
    Burman B, Pesci G, Zamarin D. Newcastle disease virus at the forefront of cancer immunotherapy[J]. Cancers (Basel), 2020, 12(12): 3552. doi: 10.3390/cancers12123552
    [31]
    Sheng Y, Wang K, Lu Q, et al. Nanobody-horseradish peroxidase fusion protein as an ultrasensitive probe to detect antibodies against Newcastle disease virus in the immunoassay[J]. J Nanobiotechnology, 2019, 17(1): 35. doi: 10.1186/s12951-019-0468-0
    [32]
    Cesewski E, Johnson BN. Electrochemical biosensors for pathogen detection[J]. Biosens Bioelectron, 2020, 159: 112214. doi: 10.1016/j.bios.2020.112214
    [33]
    Li GH, Zhu M, Ma L, et al. Generation of small single domain nanobody binders for sensitive detection of testosterone by electrochemical impedance spectroscopy[J]. ACS Appl Mater Interfaces, 2016, 8(22): 13830–13839. doi: 10.1021/acsami.6b04658
    [34]
    Oloketuyi S, Mazzega E, Zavašnik J, et al. Electrochemical immunosensor functionalized with nanobodies for the detection of the toxic microalgae Alexandrium minutum using glassy carbon electrode modified with gold nanoparticles[J]. Biosens Bioelectron, 2020, 154: 112052. doi: 10.1016/j.bios.2020.112052
    [35]
    Zakeri B, Fierer JO, Celik E, et al. Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin[J]. Proc Natl Acad Sci USA, 2012, 109(12): E690–E697. doi: 10.1073/pnas.1115485109
    [36]
    Zhang M, Li G, Zhou Q, et al. Boosted electrochemical immunosensing of genetically modified crop markers using nanobody and mesoporous carbon[J]. ACS Sens, 2018, 3(3): 684–691. doi: 10.1021/acssensors.8b00011
    [37]
    Kissler SM, Tedijanto C, Goldstein E, et al. Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period[J]. Science, 2020, 368(6493): 860–868. doi: 10.1126/science.abb5793
    [38]
    Li D, Li Q. SARS-CoV-2: vaccines in the pandemic era[J]. Mil Med Res, 2021, 8(1): 1. doi: 10.1186/s40779-020-00296-y
    [39]
    Guo K, Wustoni S, Koklu A, et al. Rapid single-molecule detection of COVID-19 and MERS antigens via nanobody-functionalized organic electrochemical transistors[J]. Nat Biomed Eng, 2021, 5(7): 666–677. doi: 10.1038/s41551-021-00734-9
    [40]
    Li F, Zhou Y, Yin H, et al. Recent advances on signal amplification strategies in photoelectrochemical sensing of microRNAs[J]. Biosens Bioelectron, 2020, 166: 112476. doi: 10.1016/j.bios.2020.112476
    [41]
    Zhao WW, Xu JJ, Chen HY. Photoelectrochemical enzymatic biosensors[J]. Biosens Bioelectron, 2017, 92: 294–304. doi: 10.1016/j.bios.2016.11.009
    [42]
    Svitkova V, Palchetti I. Functional polymers in photoelectrochemical biosensing[J]. Bioelectrochemistry, 2020, 136: 107590. doi: 10.1016/j.bioelechem.2020.107590
    [43]
    Ge L, Liu Q, Hao N, et al. Recent developments of photoelectrochemical biosensors for food analysis[J]. J Mater Chem B, 2019, 7(46): 7283–7300. doi: 10.1039/C9TB01644A
    [44]
    Mi L, Wang P, Yan J, et al. A novel photoelectrochemical immunosensor by integration of nanobody and TiO2 nanotubes for sensitive detection of serum cystatin C[J]. Anal Chim Acta, 2016, 902: 107–114. doi: 10.1016/j.aca.2015.11.007
    [45]
    Ma X, Wang C, Wu F, et al. TiO2 nanomaterials in photoelectrochemical and electrochemiluminescent biosensing[J]. Top Curr Chem, 2020, 378(2): 28. doi: 10.1007/s41061-020-0291-y
    [46]
    Li H, Mu Y, Yan J, et al. Label-free photoelectrochemical immunosensor for neutrophil gelatinase-associated lipocalin based on the use of nanobodies[J]. Anal Chem, 2015, 87(3): 2007–2015. doi: 10.1021/ac504589d
    [47]
    Liu A, Shan H, Ma M, et al. An ultrasensitive photoelectrochemical immunosensor by integration of nanobody, TiO2 nanorod arrays and ZnS nanoparticles for the detection of tumor necrosis factor-α[J]. J Electroanal Chem, 2017, 803: 1–10. doi: 10.1016/j.jelechem.2017.09.008
    [48]
    Liu Y, Sheri M, Cole MD, et al. Transforming ionene polymers into efficient cathode interlayers with pendent fullerenes[J]. Angew Chem Int Ed, 2019, 58(17): 5677–5681. doi: 10.1002/anie.201901536
    [49]
    Liu X, Kozlowska M, Okkali T, et al. Photoconductivity in metal-organic framework (MOF) thin films[J]. Angew Chem Int Ed, 2019, 58(28): 9590–9595. doi: 10.1002/anie.201904475
    [50]
    Zhou Q, Li GH, Chen K, et al. Simultaneous unlocking optoelectronic and interfacial properties of C60 for ultrasensitive immunosensing by coupling to metal-organic framework[J]. Anal Chem, 2020, 92(1): 983–990. doi: 10.1021/acs.analchem.9b03915
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (350) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return